- #1
bazingga123
- 1
- 0
Homework Statement
Recall that a function G(x) has the limit L as x tends to 1, written
lim as x -> infinity
G(x) = L,
if for any epsilon > 0, there exists M > 0 so that if x > M , then
|G(x) L| < epsilon.
This means that the limit of G(x) as x tends to 1 does not exist if for
any L and positive M, there exists epsilon > 0 so that for some x > M ,
|G(x) L| >= epsilon.
Using this definition, prove that
integral sinx dx from 2 pi to infinity diverges.
Homework Equations
The Attempt at a Solution
currently i just have no idea how to start this question up.
knowing that the integral is equals to -cos x + C, while cosine value is bouncing between -1 and 1, how do i start the proof using that definition