- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
In a space with measure $1$, $||f||_p$ is an increasing function with respect of $p$. To show that $\lim_{p \rightarrow \infty} ||f||_p=||f||_{\infty}$ we have to show that $||f||_{\infty}$ is the supremum, right??
To show that, we assume that $||f||_{\infty}-\epsilon$ is the supremum.
From the esential supremum we have that $m(\{|f|>||f||_{\infty}-\epsilon\})=0$.
So, we have to show that $m(\{|f|>||f||_{\infty}-\epsilon\})>0$.
Let $A=\{|f|>||f||_{\infty}-\epsilon\}$.
We have that $\int_A |f|^p \leq \int |f|^p \leq ||f||_{\infty}^p$.
$\int_A |f|^p >\int_A (||f||_{\infty}-\epsilon)^p=(||f||_{\infty}-\epsilon)^p m(A)$
So, $m(A)^{1/p} (||f||_{\infty}-\epsilon)<||f||_p \leq ||f||_{\infty}$
Taking the limit $p \rightarrow +\infty$ we have the following:$$\lim_{p \rightarrow +\infty}m(A)^{1/p} (||f||_{\infty}-\epsilon)<\lim_{p \rightarrow +\infty} ||f||_p $$
Since we have supposed that $||f||_{\infty}-\epsilon$ is the supremum, is the limit of $||f||_p$ equal to $||f||_{\infty}-\epsilon$?? (Wondering)
So, is it as followed??
$$\lim_{p \rightarrow +\infty}m(A)^{1/p} (||f||_{\infty}-\epsilon)<||f||_{\infty}-\epsilon $$
(Wondering)
How can we get a contradiction?? (Wondering)
In a space with measure $1$, $||f||_p$ is an increasing function with respect of $p$. To show that $\lim_{p \rightarrow \infty} ||f||_p=||f||_{\infty}$ we have to show that $||f||_{\infty}$ is the supremum, right??
To show that, we assume that $||f||_{\infty}-\epsilon$ is the supremum.
From the esential supremum we have that $m(\{|f|>||f||_{\infty}-\epsilon\})=0$.
So, we have to show that $m(\{|f|>||f||_{\infty}-\epsilon\})>0$.
Let $A=\{|f|>||f||_{\infty}-\epsilon\}$.
We have that $\int_A |f|^p \leq \int |f|^p \leq ||f||_{\infty}^p$.
$\int_A |f|^p >\int_A (||f||_{\infty}-\epsilon)^p=(||f||_{\infty}-\epsilon)^p m(A)$
So, $m(A)^{1/p} (||f||_{\infty}-\epsilon)<||f||_p \leq ||f||_{\infty}$
Taking the limit $p \rightarrow +\infty$ we have the following:$$\lim_{p \rightarrow +\infty}m(A)^{1/p} (||f||_{\infty}-\epsilon)<\lim_{p \rightarrow +\infty} ||f||_p $$
Since we have supposed that $||f||_{\infty}-\epsilon$ is the supremum, is the limit of $||f||_p$ equal to $||f||_{\infty}-\epsilon$?? (Wondering)
So, is it as followed??
$$\lim_{p \rightarrow +\infty}m(A)^{1/p} (||f||_{\infty}-\epsilon)<||f||_{\infty}-\epsilon $$
(Wondering)
How can we get a contradiction?? (Wondering)