- #1
orentago
- 27
- 0
Homework Statement
Given the Lagrangian density
[tex]L=-{1 \over 2}[\partial_\alpha\phi_\beta(x)][\partial^\alpha\phi^\beta(x)]+{1\over 2}[\partial_\alpha\phi^\alpha(x)][\partial_\beta\phi^\beta(x)]+{\mu^2\over 2}\phi_\alpha(x)\phi^\alpha(x)[/tex]
for the real vector field [tex]\phi^\alpha(x)[/tex] with field equations:
[tex][g_{\alpha\beta}(\square+\mu^2)-\partial_\alpha\partial_\beta]\phi^\beta(x)=0[/tex]
Show that the field [tex]\phi^\alpha(x)[/tex] satisfies the Lorentz condition:
[tex]\partial_\alpha\phi^\alpha(x)=0[/tex]
Homework Equations
See above.
The Attempt at a Solution
[tex][g_{\alpha\beta}(\square+\mu^2)-\partial_\alpha\partial_\beta]\phi^\beta(x)=0[/tex]
[tex]\Rightarrow\partial_\alpha\partial_\beta\phi^\beta(x)=g_{\alpha\beta}(\square+\mu^2)\phi^\beta(x)[/tex]
[tex]\Rightarrow\partial_\alpha\partial_\beta\phi^\beta(x)=g_{\alpha\beta}(\partial^\beta\partial_\beta+\mu^2)\phi^\beta(x)[/tex]
[tex]\Rightarrow\partial_\alpha\partial_\beta\phi^\beta(x)=\partial_\alpha\partial_\beta\phi^\beta(x)+\mu^2g_{\alpha\beta}\phi^\beta(x)[/tex]
[tex]\Rightarrow\mu^2g_{\alpha\beta}\phi^\beta(x)=0[/tex]
[tex]\Rightarrow\mu^2\phi^\beta(x)=0[/tex]
[tex]\Rightarrow\mu^2\partial_\alpha\phi^\alpha(x)=0[/tex]
I think I've done it, but I don't know if my method is correct. Would anyone be able to validate or refute this?