- #1
Prove It
Gold Member
MHB
- 1,465
- 24
Hi everyone. A friend of mine asked for help evaluating this multivariable limit.
$\displaystyle \begin{align*} \lim_{(x,y) \to (0,0)} \frac{x\,y^8}{x^3 + y^{12}} \end{align*}$
We got the answer of 0 by converting to polars.
$\displaystyle \begin{align*} \lim_{(x,y) \to (0,0)} \frac{x\,y^8}{x^3 + y^{12}} &= \lim_{r \to 0} \frac{r\cos{( \theta )} \, \left[ r\sin{ (\theta ) } \right] ^8}{ \left[ r\cos{ (\theta ) } \right] ^3 + \left[ r\sin{ ( \theta ) } \right] ^{12} } \\ &= \lim_{r \to 0} \frac{r^9 \cos{ ( \theta ) } \sin^8{ ( \theta ) } }{r^3 \cos^3{( \theta ) } + r^{12} \sin^{12}{ ( \theta ) } } \\ &= \lim_{r \to 0} \frac{r^6 \cos{( \theta ) } \sin^8{ ( \theta ) } }{ \cos^3{( \theta )} + r^9 \sin^{12}{(\theta ) } } \\ &= \frac{0}{\cos^3{(\theta ) } } \end{align*}$
Now for all $\displaystyle \begin{align*} \theta \neq \frac{ \left( 2n + 1 \right) \, \pi}{2}, n \in \mathbf{Z} \end{align*}$, we have $\displaystyle \begin{align*} \frac{0}{\cos^3{( \theta ) }} = 0 \end{align*}$ and since $\displaystyle \begin{align*} \theta = \frac{ \left( 2n + 1 \right) \, \pi}{2} \end{align*}$ are all REMOVABLE discontinuities (i.e. holes), that means $\displaystyle \begin{align*} \lim_{\theta \to \frac{ \left( 2n + 1 \right) \, \pi}{2}} \frac{0}{\cos^3{( \theta ) }} = 0 \end{align*}$ as well, thereby still approaching the same value from those paths too...
Therefore surely $\displaystyle \begin{align*} \lim_{(x,y) \to (0,0) } \frac{x\,y^8}{x^3 + y^{12}} = 0 \end{align*}$.
Wolfram appears to agree with us too.My friend's online assessment however has the answer of DNE. When asked about it and showing our work and Wolfram's output, my friend's lecturer is still adamant that the limit does not exist, because the value we get when converting to polars and letting r approach 0 isn't always defined i.e. where $\displaystyle \begin{align*} \theta = \frac{ \left( 2n + 1 \right)\, \pi}{2} \end{align*}$. But wouldn't that just mean that there's more paths that need to be tested, and as we have shown, we still approach the same value as $\displaystyle \begin{align*} r \to 0 \end{align*}$ from all paths with $\displaystyle \begin{align*} \theta \neq \frac{ \left( 2n + 1 \right) \, \pi}{2} \end{align*}$ as we do when $\displaystyle \begin{align*} \theta = \frac{ \left( 2n + 1 \right) \, \pi}{2} \end{align*}$.Would anyone here be able to go over our work and verify who is correct in this case please?
$\displaystyle \begin{align*} \lim_{(x,y) \to (0,0)} \frac{x\,y^8}{x^3 + y^{12}} \end{align*}$
We got the answer of 0 by converting to polars.
$\displaystyle \begin{align*} \lim_{(x,y) \to (0,0)} \frac{x\,y^8}{x^3 + y^{12}} &= \lim_{r \to 0} \frac{r\cos{( \theta )} \, \left[ r\sin{ (\theta ) } \right] ^8}{ \left[ r\cos{ (\theta ) } \right] ^3 + \left[ r\sin{ ( \theta ) } \right] ^{12} } \\ &= \lim_{r \to 0} \frac{r^9 \cos{ ( \theta ) } \sin^8{ ( \theta ) } }{r^3 \cos^3{( \theta ) } + r^{12} \sin^{12}{ ( \theta ) } } \\ &= \lim_{r \to 0} \frac{r^6 \cos{( \theta ) } \sin^8{ ( \theta ) } }{ \cos^3{( \theta )} + r^9 \sin^{12}{(\theta ) } } \\ &= \frac{0}{\cos^3{(\theta ) } } \end{align*}$
Now for all $\displaystyle \begin{align*} \theta \neq \frac{ \left( 2n + 1 \right) \, \pi}{2}, n \in \mathbf{Z} \end{align*}$, we have $\displaystyle \begin{align*} \frac{0}{\cos^3{( \theta ) }} = 0 \end{align*}$ and since $\displaystyle \begin{align*} \theta = \frac{ \left( 2n + 1 \right) \, \pi}{2} \end{align*}$ are all REMOVABLE discontinuities (i.e. holes), that means $\displaystyle \begin{align*} \lim_{\theta \to \frac{ \left( 2n + 1 \right) \, \pi}{2}} \frac{0}{\cos^3{( \theta ) }} = 0 \end{align*}$ as well, thereby still approaching the same value from those paths too...
Therefore surely $\displaystyle \begin{align*} \lim_{(x,y) \to (0,0) } \frac{x\,y^8}{x^3 + y^{12}} = 0 \end{align*}$.
Wolfram appears to agree with us too.My friend's online assessment however has the answer of DNE. When asked about it and showing our work and Wolfram's output, my friend's lecturer is still adamant that the limit does not exist, because the value we get when converting to polars and letting r approach 0 isn't always defined i.e. where $\displaystyle \begin{align*} \theta = \frac{ \left( 2n + 1 \right)\, \pi}{2} \end{align*}$. But wouldn't that just mean that there's more paths that need to be tested, and as we have shown, we still approach the same value as $\displaystyle \begin{align*} r \to 0 \end{align*}$ from all paths with $\displaystyle \begin{align*} \theta \neq \frac{ \left( 2n + 1 \right) \, \pi}{2} \end{align*}$ as we do when $\displaystyle \begin{align*} \theta = \frac{ \left( 2n + 1 \right) \, \pi}{2} \end{align*}$.Would anyone here be able to go over our work and verify who is correct in this case please?