- #1
tmt1
- 234
- 0
I have this series
$$\sum_{n =0}^{\infty}\frac{(-1)^n {x}^{2n}}{{2}^{n + 1}}$$
I need to find whether it converges or diverges at $\sqrt{2}$ and $-\sqrt{2}$.
I'm not quite sure how to approach this. For $\sqrt{2}$ I have
$$\sum_{n =0}^{\infty}\frac{(-1)^n {\sqrt{2}}^{2n}}{{2}^{n + 1}}$$Which I suppose would equal
$$\sum_{n =0}^{\infty}\frac{(-1)^n {2}^{n}}{{2}^{n + 1}}$$
Then
$$\sum_{n =0}^{\infty}\frac{(-1)^n }{2}$$
I suppose this diverges since the limit of $\frac{1}{2}$ as $n$ approaches zero is not zero, therefore it diverges.
For $- \sqrt{2}$, I suppose I have
$$\sum_{n =0}^{\infty}\frac{(-1)^n {(- \sqrt{2})}^{2n}}{{2}^{n + 1}}$$
I'm not sure how to evaluate ${(- \sqrt{2})}^{2n}$. Would it be $(-1)^{2n} \cdot 2^n$?
So I have :
$$\sum_{n =0}^{\infty}\frac{(-1)^n (-1)^{2n} {(\sqrt{2})}^{2n}}{{2}^{n + 1}}$$
Then
$$\sum_{n =0}^{\infty}\frac{(-1)^n (-1)^{2n} {2}^{n}}{{2}^{n + 1}}$$
And
$$\sum_{n =0}^{\infty} (-1)^n (-1)^{2n} \cdot \frac{1}{2} $$
$(-1)^{2n}$ should always be positive since $2n$ will always be even.
Therefore, we have
$$\sum_{n =0}^{\infty} (-1)^n \cdot \frac{1}{2} $$
Which should be divergent since the limit of $\frac{1}{2}$ as n approaches infinity does not equal 0 and $(-1)^{n}$ is alternating.
Is this correct?
$$\sum_{n =0}^{\infty}\frac{(-1)^n {x}^{2n}}{{2}^{n + 1}}$$
I need to find whether it converges or diverges at $\sqrt{2}$ and $-\sqrt{2}$.
I'm not quite sure how to approach this. For $\sqrt{2}$ I have
$$\sum_{n =0}^{\infty}\frac{(-1)^n {\sqrt{2}}^{2n}}{{2}^{n + 1}}$$Which I suppose would equal
$$\sum_{n =0}^{\infty}\frac{(-1)^n {2}^{n}}{{2}^{n + 1}}$$
Then
$$\sum_{n =0}^{\infty}\frac{(-1)^n }{2}$$
I suppose this diverges since the limit of $\frac{1}{2}$ as $n$ approaches zero is not zero, therefore it diverges.
For $- \sqrt{2}$, I suppose I have
$$\sum_{n =0}^{\infty}\frac{(-1)^n {(- \sqrt{2})}^{2n}}{{2}^{n + 1}}$$
I'm not sure how to evaluate ${(- \sqrt{2})}^{2n}$. Would it be $(-1)^{2n} \cdot 2^n$?
So I have :
$$\sum_{n =0}^{\infty}\frac{(-1)^n (-1)^{2n} {(\sqrt{2})}^{2n}}{{2}^{n + 1}}$$
Then
$$\sum_{n =0}^{\infty}\frac{(-1)^n (-1)^{2n} {2}^{n}}{{2}^{n + 1}}$$
And
$$\sum_{n =0}^{\infty} (-1)^n (-1)^{2n} \cdot \frac{1}{2} $$
$(-1)^{2n}$ should always be positive since $2n$ will always be even.
Therefore, we have
$$\sum_{n =0}^{\infty} (-1)^n \cdot \frac{1}{2} $$
Which should be divergent since the limit of $\frac{1}{2}$ as n approaches infinity does not equal 0 and $(-1)^{n}$ is alternating.
Is this correct?