- #1
epkid08
- 264
- 1
If we define a finite difference operator as [tex]\Delta a_n = a_{n+1}-a_n[/tex]
Can we prove or disprove the existence of a function F, [tex]F:\mathbb{Z}\rightarrow\mathbb{Z}[/tex], such that [tex]\Delta F(g_n)=\frac{\Delta g_n}{ g_n}[/tex], where g is some arbitrary function?
Edit: fixed Big typo
Can we prove or disprove the existence of a function F, [tex]F:\mathbb{Z}\rightarrow\mathbb{Z}[/tex], such that [tex]\Delta F(g_n)=\frac{\Delta g_n}{ g_n}[/tex], where g is some arbitrary function?
Edit: fixed Big typo
Last edited: