- #1
docnet
Gold Member
- 799
- 486
- Homework Statement
- a) Does there exist a surjection from the integers to the natural numbers?
b) Does there exist a surjection from the real numbers to the natural numbers?
- Relevant Equations
- ##\mathbb{R},\quad \mathbb{N},\quad\mathbb{Z}##
a)
Yes.
One surjection from ##\mathbb{Z}## to ##\mathbb{N}## is the double cover of ##\mathbb{N}## induced by ##f:\mathbb{Z}\longmapsto\mathbb{N}## with
$$f(z)=\begin{cases}
-z & ,\forall z<0\\
z+1 & ,\forall 0\leq z
\end{cases}$$
b)
Yes.
One surjection from ##\mathbb{R}## to ##\mathbb{N}## is the the projection ##p:\mathbb{R}\longmapsto\mathbb{N}## with ##f(r)=r## for all ##r\in\mathbb{N}\subset\mathbb{R}##.
Yes.
One surjection from ##\mathbb{Z}## to ##\mathbb{N}## is the double cover of ##\mathbb{N}## induced by ##f:\mathbb{Z}\longmapsto\mathbb{N}## with
$$f(z)=\begin{cases}
-z & ,\forall z<0\\
z+1 & ,\forall 0\leq z
\end{cases}$$
b)
Yes.
One surjection from ##\mathbb{R}## to ##\mathbb{N}## is the the projection ##p:\mathbb{R}\longmapsto\mathbb{N}## with ##f(r)=r## for all ##r\in\mathbb{N}\subset\mathbb{R}##.
Last edited: