Does This Cayley Table Accurately Represent the Dihedral Group \(D_6\)?

  • MHB
  • Thread starter Guest2
  • Start date
  • Tags
    Table
In summary: No change in the chart required...Gah! You got the wrong f's! (Shake)I mentioned r*r^5 = e. You still have it equal to f.This is the {e, r, r^2, r^3, r^4, r^5} subgroup.... No change in the chart required...In summary, the attempted Cayley table for dihedral group $D_6$ contains a mistake where $r*r^5$ is incorrectly labeled as $f$ instead of $e$. The subgroup {e, r, r^2, r^3, r^4, r^5} is correctly represented in the table.
  • #1
Guest2
193
0
This is an attempt to create the Cayley table for dihedral group $D_6$:

$$\begin{aligned} \begin{array}{cc|c|c|c|}
* && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f\\
\\
\hline
e && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline
r && r & r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f \\
\hline
r^2 && r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf \\
\hline
r^3 && r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f \\
\hline
r^4 && r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f\\
\hline
r^5 && r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f \\
\hline
f && f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f \\
\hline
rf && rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e \\
\hline
r^2f && r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r\\
\hline
r^3f && r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf \\
\hline
r^4f && r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f \\
\hline
r^{5}f && r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f & r^3f \\
\hline
&& & &
\hline
\end{array} \end{aligned}$$

Is this how it should be done? $r$ denotes rotations and $f$ denotes reflections.
 
Physics news on Phys.org
  • #2
Guest said:
This is an attempt to create the Cayley table for dihedral group $D_6$:

$$\begin{aligned} \begin{array}{cc|c|c|c|}
* && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f\\
\\
\hline
e && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline
r && r & r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f \\
\hline
r^2 && r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf \\
\hline
r^3 && r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f \\
\hline
r^4 && r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f\\
\hline
r^5 && r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f \\
\hline
f && f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f \\
\hline
rf && rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e \\
\hline
r^2f && r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r\\
\hline
r^3f && r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf \\
\hline
r^4f && r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f \\
\hline
r^{5}f && r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f & r^3f \\
\hline
&& & &
\hline
\end{array} \end{aligned}$$

Is this how it should be done? $r$ denotes rotations and $f$ denotes reflections.
You've got a boo-boo. I didn't check the rest of the chart but {e, r, r^2, r^3. r^4, r^5} is a subgroup, but you have r*r^5 = f. (etc) At least some of the f's in the chart should be e's.

-Dan
 
  • #3
topsquark said:
You've got a boo-boo. I didn't check the rest of the chart but {e, r, r^2, r^3. r^4, r^5} is a subgroup, but you have r*r^5 = f. (etc) At least some of the f's in the chart should be e's.

-Dan
lol, boo-boo indeed! Any better now?

$$\begin{aligned} \begin{array}{cc|c|c|c|}
* && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f\\
\\
\hline
e && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline
r && r & r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e \\
\hline
r^2 && r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r \\
\hline
r^3 && r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 \\
\hline
r^4 && r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3\\
\hline
r^5 && r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 \\
\hline
f && f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 \\
\hline
rf && rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f\\
\hline
r^2f && r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf\\
\hline
r^3f && r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf & r^2f\\
\hline
r^4f && r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf & r^2f & r^3 f\\
\hline
r^{5}f && r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf & r^2f & r^3 f & r^4f \\
\hline
&& & &
\hline
\end{array} \end{aligned}$$
 
  • #4
Gah! You got the wrong f's! (Shake)

I mentioned r*r^5 = e. You still have it equal to f.

This is the {e, r, r^2, r^3, r^4, r^5} subgroup. It's cyclic so there should be no f's in there.
\(\displaystyle
\begin{array}{c|c|c|c|c|c|c|}
* & e & r & r^2 & r^3 & r^4 & r^5 \\
\hline e & e & r & r^2 & r^3 & r^4 & r^5 \\
\hline r & r & r^2 & r^3 & r^4 & r^5 & e \\
\hline r^2 & r^2 & r^3 & r^4 & r^5 & e & r \\
\hline r^3 & r^3 & r^4 & r^5 & e & r & r^2 \\
\hline r^4 & r^4 & r^5 & e & r & r^2 & r^3 \\
\hline r^5 & r^5 & e & r & r^2 & r^3 & r^4 \\
\end{array}
\)

The f's you changed should be f's.

-Dan
 
  • #5
The rest of the table isn't much better off...some things that are true in $D_6$:

A rotation times a rotation is a rotation (this is topsquark's sub-table).

A rotation times a reflection is a reflection.

A reflection times a reflection is a rotation.

All reflections have order 2.
 
  • #6
Thanks @Deveno and @topsquark for the feedback. Here's take #3: $\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}
\circ & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline e & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline r & r & r^2 & r^3 & r ^4 & r ^5 & e & rf & r^2f & r^3f & r^4f & r^5f & f\\
\hline r^2 & r^2 & r^3 & r ^4 & r ^5 & e & r & r^2f & r^3f & r^4f & r^5f & f & rf\\
\hline r^3& r^3 & r ^4 & r ^5 & e & r & r^2 & r^3f & r^4f & r^5f & f & rf & r^2f\\
\hline r^4& r ^4 & r ^5 & e & r & r^2 & r^3 & r^4f & r^5f & f & rf & r^2f & r^3f\\
\hline r^5 & r ^5 & e & r & r^2 & r^3 & r^4 & r^5f & f & rf & r^2f & r^3f & r^4f\\
\hline f & f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 & r^4 & r^5 \\
\hline rf & rf& r^2f& r^3f& r^{4}f& r^{5}f & f & r & r^2 & r^3 & r^4 & r^5 & e \\
\hline r^2f & r^2f& r^3f& r^{4}f & r^{5}f & f & rf & r^2 & r^3 & r^4 & r^5 & e & r \\
\hline r^3f & r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3 & r^4 & r^5 & e & r & r^2 \\
\hline r^4f & r^{4}f& r^{5}f & f & rf & r^2f & r^3f & r^4 & r^5 & e & r & r^2 & r^3 \\
\hline r^5f & r^{5}f & f & rf & r^2f & r^3f & r^4f & r^5 & e & r & r^2 & r^3 & r^4 \\ \hline
\end{array}$
 
  • #7
There is still quite a lot wrong. For a start, $r$ and $f$ do not commute. So you should not have the product $fr$ the same as $rf$. In fact, it should be $r^5f$. Also, you have not implemented Deveno's comment that all reflections have order 2. For example, $rf$ is a reflection, so $rf\,rf$ should be $e$.
 
  • #8
Opalg said:
There is still quite a lot wrong. For a start, $r$ and $f$ do not commute. So you should not have the product $fr$ the same as $rf$. In fact, it should be $r^5f$. Also, you have not implemented Deveno's comment that all reflections have order 2. For example, $rf$ is a reflection, so $rf\,rf$ should be $e$.
Thanks for the feedback, Opalg. I tried to take all the suggestions into account, and here's what I get:
$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}
\circ & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline e & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline r & r & r^2 & r^3 & r ^4 & r ^5 & e & rf & r^2f & r^3f & r^4f & r^5f & f\\
\hline r^2 & r^2 & r^3 & r ^4 & r ^5 & e & r & r^2f & r^3f & r^4f & r^5f & f & rf\\
\hline r^3& r^3 & r ^4 & r ^5 & e & r & r^2 & r^3f & r^4f & r^5f & f & rf & r^2f\\
\hline r^4& r ^4 & r ^5 & e & r & r^2 & r^3 & r^4f & r^5f & f & rf & r^2f & r^3f\\
\hline r^5 & r ^5 & e & r & r^2 & r^3 & r^4 & r^5f & f & rf & r^2f & r^3f & r^4f\\
\hline f &f &r^5f & r^4f &r^3f &r^2f & rf& e& r^5& r^4 &r^3 &r^2 & r \\
\hline rf & rf & f & r^5 f & r^4f& r^3f & r^2f& r& e & r^5 & r^4 & r^3 & r^2 \\
\hline r^2f & r^2f & rf &f &r^5f & r^4f & r^3f &r^2 & r & e & r^5& r^4 & r^3 \\
\hline r^3f & r^3f & r^2f & rf& f & r^5f & r^4f& r^3& r^2 & r & e& r^5& r^4\\
\hline r^4f & r^4f & r^3f &r^2f &rf & f & r^5f & r^4 & r^3 & r^2& r&e & r^5\\
\hline r^5f & r^5f&r^4f & r^3f & r^2f &rf &f &r^5 &r^4 &r^3 &r^2 &r & e\\ \hline
\end{array}$$
 
  • #9
Guest said:
Thanks for the feedback, Opalg. I tried to take all the suggestions into account, and here's what I get:
$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}
\circ & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline e & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline r & r & r^2 & r^3 & r ^4 & r ^5 & e & rf & r^2f & r^3f & r^4f & r^5f & f\\
\hline r^2 & r^2 & r^3 & r ^4 & r ^5 & e & r & r^2f & r^3f & r^4f & r^5f & f & rf\\
\hline r^3& r^3 & r ^4 & r ^5 & e & r & r^2 & r^3f & r^4f & r^5f & f & rf & r^2f\\
\hline r^4& r ^4 & r ^5 & e & r & r^2 & r^3 & r^4f & r^5f & f & rf & r^2f & r^3f\\
\hline r^5 & r ^5 & e & r & r^2 & r^3 & r^4 & r^5f & f & rf & r^2f & r^3f & r^4f\\
\hline f &f &r^5f & r^4f &r^3f &r^2f & rf& e& r^5& r^4 &r^3 &r^2 & r \\
\hline rf & rf & f & r^5 f & r^4f& r^3f & r^2f& r& e & r^5 & r^4 & r^3 & r^2 \\
\hline r^2f & r^2f & rf &f &r^5f & r^4f & r^3f &r^2 & r & e & r^5& r^4 & r^3 \\
\hline r^3f & r^3f & r^2f & rf& f & r^5f & r^4f& r^3& r^2 & r & e& r^5& r^4\\
\hline r^4f & r^4f & r^3f &r^2f &rf & f & r^5f & r^4 & r^3 & r^2& r&e & r^5\\
\hline r^5f & r^5f&r^4f & r^3f & r^2f &rf &f &r^5 &r^4 &r^3 &r^2 &r & e\\ \hline
\end{array}$$

That looks correct (I honestly don't have time to verify all 144 products). There's a "trick" to this:

There is a rule for "getting the $r$'s in front":

$fr^k = r^{-k}f$.

Sometimes this is written as: $fr^kf = r^{-k}$, and can be proven by noting that:

$frf = frf^{-1}= r^{-1}$, and that:

$fr^kf = fr^kf^{-1} = (frf^{-1})(frf^{-1})\cdots(frf^{-1}) = (frf^{-1})^k = (frf)^k$.

(This same trick works for any dihedral group).

Notice that your Cayley table divides nicely into four 6x6 blocks, the northwest block is the subgroup table for the rotation subgroup $\langle r\rangle$, the northeast and southwest blocks can be taken as "representative" of $f\langle r\rangle$ as a whole (the "other" coset of $\langle r\rangle$ besides the rotation group itself), the southeast block represents my statement that "a reflection times a reflection is a rotation" -which you can see at a glance, since it has no $f$'s in it.

If we call the rotation group $R$, this gives us a "over-table" (whose elements are the 6x6 "blocks"):

$$\begin{array}{c|c|c|}
\circ&R&fR\\
\hline R&R&fR\\
\hline fR&fR&R\\ \hline
\end{array}$$

In other words, a visual demonstration that $D_4/R \cong C_2$ (a cyclic group of order 2).

Geometrically, $r$ is, of course, a rotation (typically counter-clockwise to agree with trigonometry), and $f$ is a "flip" about an agreed-upon axis between two opposite vertices or midpoints. If you *really* want to give yourself a work-out, you can try to think of 2x2 matrices that represent $r$ and $f$, and verify your Cayley table that way, as well (although this may seem like a lot of work, it is part of the process of creating a *character table*, something chemists actually use to classify molecular symmetry-$D_6$ is the symmetry group of the benzene molecule-which plays an important part in many organic compounds).

In any case, it is obvious that if you flip a hexagon, rotate it, and flip it again, the second flip means your rotation now counts in the opposite direction, which is why $frf = r^{-1}$ (because the "flipped plane" turns counter-clockwise to clockwise, and vice versa: it has the opposite *orientation*).
 
  • #10
Deveno said:
...
Many thanks, Deveno. From what you have said it seems there's all kinds of information encoded into the table!
 

FAQ: Does This Cayley Table Accurately Represent the Dihedral Group \(D_6\)?

What is a Cayley table?

A Cayley table is a mathematical tool used to represent the operation of a group, a set of elements with a defined binary operation.

How do you read a Cayley table?

A Cayley table is read by finding the corresponding row and column of the two elements being operated on, and then locating the value in the cell where the row and column intersect.

How do you know if a Cayley table is correct?

To determine if a Cayley table is correct, you must first ensure that it follows the closure, associativity, identity, and inverse properties of a group. Then, you can check that the operation is performed correctly for each pair of elements in the table.

Can a Cayley table have duplicate values in a row or column?

No, a Cayley table cannot have duplicate values in a row or column. This would violate the closure property and make the table incorrect.

What is the purpose of a Cayley table?

The purpose of a Cayley table is to provide a visual representation of the operation of a group, making it easier to understand and solve problems involving the group's elements and operation.

Similar threads

Replies
3
Views
3K
Replies
1
Views
719
Replies
14
Views
2K
Replies
1
Views
2K
Replies
7
Views
1K
Replies
8
Views
2K
Replies
1
Views
1K
Replies
15
Views
1K
Back
Top