- #1
Punkyc7
- 420
- 0
use the definition of a sequence to establish the limit
lim([itex]\frac{2n}{n+1}[/itex])=2 Let [itex]\epsilon[/itex]>0, then |[itex]\frac{2n}{n+1}[/itex]-2| <[itex]\epsilon[/itex]. Next we have that | [itex]\frac{2n-2n+-2}{n+1}[/itex]|= |[itex]\frac{-2}{n+1}[/itex]| <[itex]\frac{2}{n}[/itex]. So [itex]\exists[/itex] k[itex]\in[/itex][itex]N[/itex] such that [itex]\frac{2}{k}[/itex]<[itex]\epsilon[/itex]. When n[itex]\geq[/itex]k, we have [itex]\frac{2}{n}[/itex] < [itex]\frac{2}{k}[/itex] <[itex]\epsilon[/itex]. Therefore the limit is 2. BLOCKIs this the right way to do a limit proof?
lim([itex]\frac{2n}{n+1}[/itex])=2 Let [itex]\epsilon[/itex]>0, then |[itex]\frac{2n}{n+1}[/itex]-2| <[itex]\epsilon[/itex]. Next we have that | [itex]\frac{2n-2n+-2}{n+1}[/itex]|= |[itex]\frac{-2}{n+1}[/itex]| <[itex]\frac{2}{n}[/itex]. So [itex]\exists[/itex] k[itex]\in[/itex][itex]N[/itex] such that [itex]\frac{2}{k}[/itex]<[itex]\epsilon[/itex]. When n[itex]\geq[/itex]k, we have [itex]\frac{2}{n}[/itex] < [itex]\frac{2}{k}[/itex] <[itex]\epsilon[/itex]. Therefore the limit is 2. BLOCKIs this the right way to do a limit proof?