- #36
vanesch
Staff Emeritus
Science Advisor
Gold Member
- 5,117
- 20
vanesch said:But no need to argue here: it is a statement that can be falsified. Show me an apparatus that can make a measurement of the energy E of a system when it has access to the system during time T, and whose accuracy dE is better than that given by the uncertainty relationship: meaning: the apparatus will be able to distinguish with high certainty two different incoming states which differ by less than dE.
In order to follow up on this, I would like to propose the following.
Imagine a single particle, in a pure momentum state (and, it being free, hence a pure energy state). Imagine that at t = 0, we do a "position measurement", where this position measurement can be very crude, or very accurate. If it is very crude, then we assume that it is still closely in its pure energy state (say, we know up to 1 cm where it came by). If it is very accurate, then the particle is now in an almost pure position state.
The challenge is now: construct me a momentum measuring apparatus which will give me the momentum (or energy) within an accuracy dE, and where the measurement is completed after time T, such that T.dE << hbar. This precise measurement will then be used to find out whether I applied the "crude" or the "precise" position measurement, in order to establish the energy (or momentum) distribution of the state.
For the "crude" measurement, this should then be a highly peaked distribution, while for the precise measurement, this should be a very broad distribution.
My claim is that you cannot think up of a setup that can do this, if T.dE << hbar
For BIG T, there's no problem of course: let the particle fly freely over 20km, and measure its arrival time and position, and you then have the momentum at high precision. But it takes a long time to have your particle fly over 20 km. You'll have an initial uncertainty on the position too (depending exactly how you want to do it, but in order to respect the momentum resolution for the crude case, this cannot be better than 1cm).
So go ahead and think upon a measurement system that will give me E within dE after less than a time T, such that dE.T << hbar. I think it cannot be done. If it can, my statement is indeed wrong.
EDIT: you may want the particle to be charged, if this makes it any easier.
Last edited: