- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Let $(a_n)$ be a sequence of real numbers such that $a_n \to a$ for some $a \in \mathbb{R}$. I want to show that $\frac{a_1+a_2+\dots+a_n}{n} \to a$.
We have the following:
Let $\epsilon>0$.
Since $a_n \to a$, there is some positive integer $N$ such that if $n \geq N$, then $a-\epsilon<a_n<a+\epsilon$.
Let $b_n=\frac{a_1+a_2+\dots+a_n}{n}$, for $n \geq N$.
We have that $b_n=\frac{a_1+a_2+\dots+a_N}{n}+\frac{a_{N+1}+\dots+a_n}{n}$
and since
$\frac{(n-N)(a-\epsilon)}{n}<\frac{a_{N+1}+\dots+a_n}{n}<\frac{(n-N)(a+\epsilon)}{n}$
we have that
$\frac{C}{n}+\frac{(n-N)(a-\epsilon)}{n}<b_n<\frac{C}{n}+\frac{(n-N)(a+\epsilon)}{n}$
where $C=a_1+a_2+\dots+a_N$.
Can we now just let $n \to +\infty$ ?
Then we would get that $\lim_{n \to +\infty} \left( \frac{C}{n}+ \left( 1-\frac{N}{n}\right)(a-\epsilon)\right)< \lim_{n \to +\infty}b_n < \lim_{n \to +\infty} \left( \frac{C}{n}+\left( 1-\frac{N}{n}\right) (a+\epsilon)\right) \Rightarrow a-\epsilon<\lim_{n \to +\infty} b_n< a+\epsilon \Rightarrow \lim_{n \to +\infty} b_n=a$.
Is this right?
Because I found the proof online and there they pick $\lim_{n \to +\infty} \sup{b_n}$ in order to get the desired result. But is this necessary? (Thinking)
Let $(a_n)$ be a sequence of real numbers such that $a_n \to a$ for some $a \in \mathbb{R}$. I want to show that $\frac{a_1+a_2+\dots+a_n}{n} \to a$.
We have the following:
Let $\epsilon>0$.
Since $a_n \to a$, there is some positive integer $N$ such that if $n \geq N$, then $a-\epsilon<a_n<a+\epsilon$.
Let $b_n=\frac{a_1+a_2+\dots+a_n}{n}$, for $n \geq N$.
We have that $b_n=\frac{a_1+a_2+\dots+a_N}{n}+\frac{a_{N+1}+\dots+a_n}{n}$
and since
$\frac{(n-N)(a-\epsilon)}{n}<\frac{a_{N+1}+\dots+a_n}{n}<\frac{(n-N)(a+\epsilon)}{n}$
we have that
$\frac{C}{n}+\frac{(n-N)(a-\epsilon)}{n}<b_n<\frac{C}{n}+\frac{(n-N)(a+\epsilon)}{n}$
where $C=a_1+a_2+\dots+a_N$.
Can we now just let $n \to +\infty$ ?
Then we would get that $\lim_{n \to +\infty} \left( \frac{C}{n}+ \left( 1-\frac{N}{n}\right)(a-\epsilon)\right)< \lim_{n \to +\infty}b_n < \lim_{n \to +\infty} \left( \frac{C}{n}+\left( 1-\frac{N}{n}\right) (a+\epsilon)\right) \Rightarrow a-\epsilon<\lim_{n \to +\infty} b_n< a+\epsilon \Rightarrow \lim_{n \to +\infty} b_n=a$.
Is this right?
Because I found the proof online and there they pick $\lim_{n \to +\infty} \sup{b_n}$ in order to get the desired result. But is this necessary? (Thinking)