- #1
stfz
- 35
- 0
Homework Statement
The classic double ball drop question: a ball of mass m is placed directly above another ball of mass M, and assume that m is not negligible. Both balls are dropped simultaneously. Find the mass m such that, upon the second collision (m with M), M has a final velocity of zero.
Homework Equations
Conservation of momentum
Elastic collision assumed.
The Attempt at a Solution
Here, probably my only question is how to justify applying conservation of momentum to the collision. My reasoning is that conservation of momentum shouldn't apply because there is an external force on the two-ball system (gravitation). However, from what I know of the 'impulse approximation', we can treat the background forces (i.e. gravity) as negligible given that the collision occurs across a very short period of time? We can then work with momentum conservation over an infinitesimal time interval? (i.e. the effects of gravitational acceleration on momentum of the system may then be ignored)
Is that the correct reason for why it may be applied? Thanks :)