- #1
ai93
- 54
- 0
Can anyone double check my answers? I have to put the answer in this format \(\displaystyle a+b\sqrt{c}\)
a)\(\displaystyle (3-\sqrt{18})^{2}\)
Answer
\(\displaystyle (3-\sqrt{18}) \quad(3-\sqrt{18})\)
\(\displaystyle 9-3\sqrt{18}-3\sqrt{18}+18\)
\(\displaystyle 9-6\sqrt{18}+18\)
\(\displaystyle 27(-6)\quad(3\sqrt{2)}\)
=\(\displaystyle 27-18\sqrt{2}\)
\(\displaystyle \therefore a = 27 b = -18 c = \sqrt{2}\)
Wouldn't I have to put it in \(\displaystyle +b?\) I got -18
b) \(\displaystyle \frac{3}{4-\sqrt{7}}\)
Answer
\(\displaystyle \frac{3}{4-\sqrt{7}}\) x \(\displaystyle \frac{4+\sqrt{7}}{4+\sqrt{7}}\)
\(\displaystyle \frac{3(4+\sqrt{7)}}{(4-\sqrt{7)(4+\sqrt{7)}}}\)
\(\displaystyle \frac{12+3\sqrt{7}}{16+4\sqrt{7}-4\sqrt{7}-7}\)
So
\(\displaystyle \frac{12+3\sqrt{7}}{9}\) CF is 3 so divide by 3
=\(\displaystyle \frac{4}{3}+1\sqrt{7}\)
\(\displaystyle a=\frac{4}{3} b=1 c=\sqrt{2}\)
c) \(\displaystyle \frac{4+\sqrt{5}}{3-\sqrt{5}}\)
Answer
\(\displaystyle \frac{4+\sqrt{5}}{3-\sqrt{5}}\) x \(\displaystyle \frac{3+\sqrt{5}}{3+\sqrt{5}}\)
\(\displaystyle \frac{(4+\sqrt{5)(3+\sqrt{5)}}}{(3-\sqrt{5)(3+\sqrt{5)}}}\)
\(\displaystyle \frac{12+4\sqrt{5}+3\sqrt{5}+5}{9+3\sqrt{5-3\sqrt{5}-5}}\)
=\(\displaystyle \frac{17}{4}+7\sqrt{5}\)
\(\displaystyle a=\frac{17}{4} b= 7 c=\sqrt{5}\)
Please correct me if i am wrong, and some of the questions I cannot display how I want, I hope you understand
a)\(\displaystyle (3-\sqrt{18})^{2}\)
Answer
\(\displaystyle (3-\sqrt{18}) \quad(3-\sqrt{18})\)
\(\displaystyle 9-3\sqrt{18}-3\sqrt{18}+18\)
\(\displaystyle 9-6\sqrt{18}+18\)
\(\displaystyle 27(-6)\quad(3\sqrt{2)}\)
=\(\displaystyle 27-18\sqrt{2}\)
\(\displaystyle \therefore a = 27 b = -18 c = \sqrt{2}\)
Wouldn't I have to put it in \(\displaystyle +b?\) I got -18
b) \(\displaystyle \frac{3}{4-\sqrt{7}}\)
Answer
\(\displaystyle \frac{3}{4-\sqrt{7}}\) x \(\displaystyle \frac{4+\sqrt{7}}{4+\sqrt{7}}\)
\(\displaystyle \frac{3(4+\sqrt{7)}}{(4-\sqrt{7)(4+\sqrt{7)}}}\)
\(\displaystyle \frac{12+3\sqrt{7}}{16+4\sqrt{7}-4\sqrt{7}-7}\)
So
\(\displaystyle \frac{12+3\sqrt{7}}{9}\) CF is 3 so divide by 3
=\(\displaystyle \frac{4}{3}+1\sqrt{7}\)
\(\displaystyle a=\frac{4}{3} b=1 c=\sqrt{2}\)
c) \(\displaystyle \frac{4+\sqrt{5}}{3-\sqrt{5}}\)
Answer
\(\displaystyle \frac{4+\sqrt{5}}{3-\sqrt{5}}\) x \(\displaystyle \frac{3+\sqrt{5}}{3+\sqrt{5}}\)
\(\displaystyle \frac{(4+\sqrt{5)(3+\sqrt{5)}}}{(3-\sqrt{5)(3+\sqrt{5)}}}\)
\(\displaystyle \frac{12+4\sqrt{5}+3\sqrt{5}+5}{9+3\sqrt{5-3\sqrt{5}-5}}\)
=\(\displaystyle \frac{17}{4}+7\sqrt{5}\)
\(\displaystyle a=\frac{17}{4} b= 7 c=\sqrt{5}\)
Please correct me if i am wrong, and some of the questions I cannot display how I want, I hope you understand
Last edited: