- #1
Dustinsfl
- 2,281
- 5
$$
\sum_{n = 1}^{\infty}\sum_{m = 1}^{\infty}A_{nm}\sin\frac{n\pi x}{L}\sin\frac{m\pi y}{H} = -\frac{4}{\pi}\sum_{k = 1}^{\infty}\frac{1}{(2k-1)\sinh\frac{\pi(2k-1)H}{L}}\sin\frac{\pi(2k-1)x}{L}\sinh\frac{\pi(2k-1)y}{L}
$$
If I start with x on the left, can I then end up with:
$$
\frac{L}{2}\sum_{m = 1}^{\infty}A_{nm}\sin\frac{m\pi y}{H} = -\frac{4L}{2\pi}\Rightarrow\sum_{m = 1}^{\infty}A_{nm}\sin\frac{m\pi y}{H} = -\frac{4}{\pi}
$$
So
$$
A_{nm} = -\frac{8}{H\pi}\int_0^H\sin\frac{m\pi y}{H}dy = \begin{cases}
0, & \text{if m is even}\\
-\frac{16}{m\pi^2}, & \text{if m is odd}
\end{cases}
$$
$$
\frac{16}{\pi^2}\sum_{n = 1}^{\infty}\sum_{m = 1}^{\infty}\sin\frac{n\pi x}{L}\sin\frac{(2m-1)\pi y}{H} = \frac{4}{\pi}\sum_{k = 1}^{\infty}\frac{1}{(2k-1)\sinh\frac{\pi(2k-1)H}{L}}\sin\frac{\pi(2k-1)x}{L}\sinh\frac{\pi(2k-1)y}{L}
$$
Is this true though?
\sum_{n = 1}^{\infty}\sum_{m = 1}^{\infty}A_{nm}\sin\frac{n\pi x}{L}\sin\frac{m\pi y}{H} = -\frac{4}{\pi}\sum_{k = 1}^{\infty}\frac{1}{(2k-1)\sinh\frac{\pi(2k-1)H}{L}}\sin\frac{\pi(2k-1)x}{L}\sinh\frac{\pi(2k-1)y}{L}
$$
If I start with x on the left, can I then end up with:
$$
\frac{L}{2}\sum_{m = 1}^{\infty}A_{nm}\sin\frac{m\pi y}{H} = -\frac{4L}{2\pi}\Rightarrow\sum_{m = 1}^{\infty}A_{nm}\sin\frac{m\pi y}{H} = -\frac{4}{\pi}
$$
So
$$
A_{nm} = -\frac{8}{H\pi}\int_0^H\sin\frac{m\pi y}{H}dy = \begin{cases}
0, & \text{if m is even}\\
-\frac{16}{m\pi^2}, & \text{if m is odd}
\end{cases}
$$
$$
\frac{16}{\pi^2}\sum_{n = 1}^{\infty}\sum_{m = 1}^{\infty}\sin\frac{n\pi x}{L}\sin\frac{(2m-1)\pi y}{H} = \frac{4}{\pi}\sum_{k = 1}^{\infty}\frac{1}{(2k-1)\sinh\frac{\pi(2k-1)H}{L}}\sin\frac{\pi(2k-1)x}{L}\sinh\frac{\pi(2k-1)y}{L}
$$
Is this true though?
Last edited: