I Double Slit Experiment Mathematics

James Brady
Messages
106
Reaction score
4
Electrons are shot thru two slits separated by a distance s at a screen a distance ##z_0## away. The wave function for the particles is proportional to ## e^{ik \sqrt{(x-s/2)^2+z_0^2}} +e^{ik \sqrt{(x+s/2)^2+z_0^2}}##

Taking the first one, we can manipulate the square root algebraically ##z_0\sqrt{1 + (x-s/2)^2/z_0^2}##, this is where I run into issues, according to the text we can use the fact that ##\sqrt{1+a} = 1 + a/2## in a power series expansion to get ##z_0 + (x-s/2)^2/2 z_0## for small values of x.

I don't know how they got that. When I do a Taylor series expansion on ##z_0\sqrt{1 + (x-s/2)^2/z_0^2}## I get ##z_0\sqrt{1 + (s/2)^2/z_0^2} - \frac{-s/2}{z_0*\sqrt{\frac{-2/2}{z_0^2}+1}} *x## ...

How did they come up with such a simple answer using ##\sum_{n=0}^1 \frac{f^n(0)}{n!} x^n## ?

Am I using the Taylor series wrong?

The book goes on to use ##2cos(\theta) = exp(i \theta) + exp(-i \theta)## to obtain a final wave equation (at the screen) of ##exp(i \theta) cos(ksx/2z_0)## where k is the wave number ##\lambda = 2 \pi/k##

How did they come up with that? I don't see the algebra at all.

confused.
 
Physics news on Phys.org
James Brady said:
Taking the first one, we can manipulate the square root algebraically ##z_0\sqrt{1 + (x-s/2)^2/z_0^2}##, this is where I run into issues, according to the text we can use the fact that ##\sqrt{1+a} = 1 + a/2##
That can be obtained from the binomial theorem, which is a special case of Taylor series.
James Brady said:
The book goes on to use ##2cos(\theta) = exp(i \theta) + exp(-i \theta)## to obtain a final wave equation (at the screen) of ##exp(i \theta) cos(ksx/2z_0)## where k is the wave number ##\lambda = 2 \pi/k##

How did they come up with that? I don't see the algebra at all.
Do you know Eulers identity for the complex exponential?
 
  • Like
Likes vanhees71 and James Brady
When I apply the Taylor series about x = 0:

##\frac{f(0)}{0!}0^0:####z_0 \sqrt{1 + (0-s/2)^2/z_0^2} = z_0 \sqrt{1 + (-s/2)^2/z_0^2}##
##\frac{f^{(1)}(0)}{1!}0^1:##
##\frac{0-s/2}{z_0 \sqrt{1 + (0-s/2)^2/z_0^2}}## = ##\frac{-s/2}{z_0 \sqrt{1 + (-s/2)^2/z_0^2}}##
Adding these values gives a different answer than the book.

I'm not exactly sure what a fractional binomial theorem looks look, I understand the whole number BT, but for square roots and what not I can't find a formula online.

...

I know Euler's identity ##exp(i \pi) + 1 = 0## I just don't see how that applies here.
 
You need to use the Taylor series around ##x = \frac s 2##.

You can make the calculation easier by the substitution ##a = \frac{(x -\frac s 2)^2}{z^2}##, as the book indicates. Then use the Taylor series about ##a = 0##.

Try Eulers formula!
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top