- #1
issacnewton
- 1,039
- 37
- Homework Statement
- Solve ##x^2 = 4##
- Relevant Equations
- rules of factoring and absolute values
I was thinking of this simple equation here, ## x^2 = 4##. Many students present the solution as follows.
$$ x^2 = 4 $$
$$ \therefore x = \sqrt{4} = \pm 2 $$
Now, even though the final answer is correct, there is a mistake in arriving at the solution. Square root symbol means that we have to take positive square root only. Following is a correct method in my opinion.
$$ x^2 = 4 $$
$$ \therefore |x|^2 = |2|^2 $$
$$ \sqrt{|x|^2} = \sqrt{|2|^2}$$
Now, since, ## |y| = \sqrt{y^2} ## for any ##y##, we have
$$ ||x|| = ||2|| $$
$$ |x| = |2| = 2 $$
Now, either ##x \geq 0 ## or ## x < 0 ##, so, we get two solutions. ##x = 2 ## and ## - x = 2 ##. So, finally, we have ## x= 2## or ##x = -2##
I think this would be rigorous way of solving this. I myself was confused about this for a while. How do you see students solving such an equation ?
$$ x^2 = 4 $$
$$ \therefore x = \sqrt{4} = \pm 2 $$
Now, even though the final answer is correct, there is a mistake in arriving at the solution. Square root symbol means that we have to take positive square root only. Following is a correct method in my opinion.
$$ x^2 = 4 $$
$$ \therefore |x|^2 = |2|^2 $$
$$ \sqrt{|x|^2} = \sqrt{|2|^2}$$
Now, since, ## |y| = \sqrt{y^2} ## for any ##y##, we have
$$ ||x|| = ||2|| $$
$$ |x| = |2| = 2 $$
Now, either ##x \geq 0 ## or ## x < 0 ##, so, we get two solutions. ##x = 2 ## and ## - x = 2 ##. So, finally, we have ## x= 2## or ##x = -2##
I think this would be rigorous way of solving this. I myself was confused about this for a while. How do you see students solving such an equation ?