- #1
Kashmir
- 468
- 74
McIntyre, quantum mechanics,pg360
Suppose states ##\left|2^{(0)}\right\rangle## and ##\left|3^{(0)}\right\rangle## are degenerate eigenstates of unperturbed Hamiltonian ##H##
Author writes:
"The first-order perturbation equation we want to solve is
##
\left.\left(H_{0}-E_{n}^{(0)}\right)\left|n^{(1)}\right\rangle=\left(E_{n}^{(1)}-H^{\prime}\right) \mid n^{(0)}
\right >)
##"
"But the energy degeneracy of these two states creates an ambiguity. Both ##\left|2^{(0)}\right\rangle## and ##\left|3^{(0)}\right\rangle## satisfy the zeroth-order energy eigenvalue equation for the energy ##E_{2}^{(0)}##, but so does any linear combination of the two states. If we are trying to find the energy correction to the state with zeroth-order energy ##E_{2}^{(0)}##, how do we know whether to use the state ##\left|2^{(0)}\right\rangle## or the state ##\left|3^{(0)}\right\rangle## in the perturbation equation? "
Why can't I use ##\left|2^{(0)}\right\rangle## and ##\left|3^{(0)}\right\rangle##individually in the perturbation equation and carry on?
Suppose states ##\left|2^{(0)}\right\rangle## and ##\left|3^{(0)}\right\rangle## are degenerate eigenstates of unperturbed Hamiltonian ##H##
Author writes:
"The first-order perturbation equation we want to solve is
##
\left.\left(H_{0}-E_{n}^{(0)}\right)\left|n^{(1)}\right\rangle=\left(E_{n}^{(1)}-H^{\prime}\right) \mid n^{(0)}
\right >)
##"
"But the energy degeneracy of these two states creates an ambiguity. Both ##\left|2^{(0)}\right\rangle## and ##\left|3^{(0)}\right\rangle## satisfy the zeroth-order energy eigenvalue equation for the energy ##E_{2}^{(0)}##, but so does any linear combination of the two states. If we are trying to find the energy correction to the state with zeroth-order energy ##E_{2}^{(0)}##, how do we know whether to use the state ##\left|2^{(0)}\right\rangle## or the state ##\left|3^{(0)}\right\rangle## in the perturbation equation? "
Why can't I use ##\left|2^{(0)}\right\rangle## and ##\left|3^{(0)}\right\rangle##individually in the perturbation equation and carry on?