- #1
SteveMaryland
- 16
- 2
Sorry if this is the wrong place to post, but my inquiry spans so many STEM disciplines I figured I would post it here. Also, I have really looked for papers which address this issue and hope someone on PF can advise.
Given a flow network, which could be any connected set of N resistors, or water pipes, etc. of any finite ohmage, diameter etc. and connected in any sort of parallel, series, delta-wye combinations. Under an applied energy gradient (voltage, gravity etc.), a flow will occur through this network, and each branch of the network will exhibit a non-zero flux.
Hypothesis: Upon gradient application, this network + fluid system will spontaneously converge to a specific set of flux allocations for each branch, and the sum of all branch fluxes will be a maximum possible for the given system metrics. True?
Why would the flux converge to a "max" flux? And, by what means (selection, trial/error, filtering, sortation) do flow systems in general converge to a "solution"? The convergence (to steady-state flow) cannot be instantaneous, but what does actually go on in the process? (by what physics does Nature solve such an N X N matrix "automatically"?)
(The above system is in steady-state flow, but is not in equilibrium.)
Thanks for your wisdom. And, for my further reading, please advise what branch of physics would study this general phenomenon!
Given a flow network, which could be any connected set of N resistors, or water pipes, etc. of any finite ohmage, diameter etc. and connected in any sort of parallel, series, delta-wye combinations. Under an applied energy gradient (voltage, gravity etc.), a flow will occur through this network, and each branch of the network will exhibit a non-zero flux.
Hypothesis: Upon gradient application, this network + fluid system will spontaneously converge to a specific set of flux allocations for each branch, and the sum of all branch fluxes will be a maximum possible for the given system metrics. True?
Why would the flux converge to a "max" flux? And, by what means (selection, trial/error, filtering, sortation) do flow systems in general converge to a "solution"? The convergence (to steady-state flow) cannot be instantaneous, but what does actually go on in the process? (by what physics does Nature solve such an N X N matrix "automatically"?)
(The above system is in steady-state flow, but is not in equilibrium.)
Thanks for your wisdom. And, for my further reading, please advise what branch of physics would study this general phenomenon!
Last edited: