MHB Easy Identity Question: Proving 2cos(x)sin(x) = sin(2x)

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Identity
AI Thread Summary
The identity 2cos(x)sin(x) = sin(2x) is confirmed as correct. The discussion highlights the importance of proper notation in trigonometric expressions, recommending the use of either $\sin x$ or $\sin(x)$ instead of sinx. It emphasizes that when combining functions, parentheses should be used to clarify the argument. The mention of double-angle formulas indicates a resource for further exploration of trigonometric identities. Proper notation is essential for clear mathematical communication.
tmt1
Messages
230
Reaction score
0
Hi,

I just want to double check that

2cos(x)sin(x) = 2sin(x)cos(x) = sin(x)2cos(x) = sin(2x)

Thanks,

Tim
 
Last edited:
Mathematics news on Phys.org
Yes. the identity is correct. You can find a list of trigonometric identities in Wikipedia. See, in particular, double-angle formulas.

A couple of remarks about notation. One should write $\sin x$ (with a space) or $\sin(x)$, not sinx. If the argument is followed by another factor, then the argument should be wrapped in parentheses. For example, $\sin x\cos x$ can theoretically be parse either as $\sin(x)\cos(x)$ or as $\sin(x\cos(x))$, but $\sin(x)\cos(x)$ clearly shows that the argument of sine is just $x$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top