- #1
Parad0x88
- 74
- 0
Homework Statement
Consider the eddy-current braking. A square loop, with 10 cm side is shot with the velocity 10 m/s into the uniform magnetic field with magnitude 0.1 T. The field is perpendicular to the plane of the loop, and the loop starts entering magnetic field at t=0. The resistance of the loop is 1.00 Ohm and the mass is 1.0 g. Assume the loop is moving to the right along x-axis and that x(t=0)=0. Find the velocity of the loop 0.1 seconds later. Comment on assumptions and approximation, or venture into the realm of differential equations…
Homework Equations
A = 0.1m X 0.1 m = 0.01m2
V = 10m/s
B = 0.1T
R = 1Ω
m = 0.001kg
t = 0.1s
Flux = BA = 0.001Wb
ε = Flux/t = 0.01v
I = ε/R
l = 0.1m
The Attempt at a Solution
My first reflex was to find the current: I = .01v/1Ω = 0.01A
And then I wanted to find the new velocity with the formula above, problem is; IR/Bl = (0.01A X 1Ω)/(0.1T X .1m) = 10 m/s, so that doesn't work
And now I'm stumped, I can't really figure out this problem -_-