- #1
Flame666
- 2
- 0
How do resistance and speed of a coil in pendulum motion in a magnetic filed affect the induced voltage and the decay of Potential Difference?
Details:
Q1 When the speed of a coil is kept constant and a 3.3ohm resistor is added to the circuit of which the coil is a part of, the induced voltage drops. Why is this so? When the resistor is replaced with a 5.0ohm resistor the induced voltage for some reason increases and when the 5.0ohm resistor is replaced with a 6.8ohm resistor the induced voltage further increases. Why is this so? The induced voltage is considerably low when resistors are added to when compared to what the induced voltage is when a resistor is not added to the circuit.
Q2 why and how is the rate of decay of potential difference affected by resistance? The rate of decay of potential difference is highest when no resistor is added to the circuit followed by when a 6.8ohm resistor is added and then by a 5.0ohm and 3.3ohm resistor.
Note According to the data collected the induced current remains the same even when the resistance is changed.
I included the diagram of the setup. This is not a homework question.
Details:
Q1 When the speed of a coil is kept constant and a 3.3ohm resistor is added to the circuit of which the coil is a part of, the induced voltage drops. Why is this so? When the resistor is replaced with a 5.0ohm resistor the induced voltage for some reason increases and when the 5.0ohm resistor is replaced with a 6.8ohm resistor the induced voltage further increases. Why is this so? The induced voltage is considerably low when resistors are added to when compared to what the induced voltage is when a resistor is not added to the circuit.
Q2 why and how is the rate of decay of potential difference affected by resistance? The rate of decay of potential difference is highest when no resistor is added to the circuit followed by when a 6.8ohm resistor is added and then by a 5.0ohm and 3.3ohm resistor.
Note According to the data collected the induced current remains the same even when the resistance is changed.
I included the diagram of the setup. This is not a homework question.
Attachments
Last edited: