- #1
dave84
- 4
- 0
Homework Statement
We have a Stirling heat engine. I'm calculating the efficiency [itex]\eta[/itex].
Homework Equations
[itex]Q_{12} = \frac{m R T_2}{M} \ln(\frac{V_2}{V_1}) > 0[/itex]
[itex]Q_{23} = m c_v (T_1 - T_2) < 0[/itex]
[itex]Q_{34} = \frac{m R T_1}{M} \ln(\frac{V_1}{V_2}) < 0[/itex]
[itex]Q_{41} = m c_v (T_2 - T_1) > 0[/itex]
[itex]\kappa = \frac{c_p}{c_v}[/itex]
[itex]\frac{R}{c_v M} = \kappa - 1[/itex]
The Attempt at a Solution
My result is [itex]\eta = \frac{|(\kappa-1)T_1 \ln(\frac{V_1}{V_2})+(\kappa-1)T_2 \ln(\frac{V_2}{V_1})|}{(T_2 - T_1) + (\kappa - 1)T_2 \ln(\frac{V_2}{V_1})}[/itex].
Can anyone confirm this? I'm sorry if this is too trivial.
Last edited: