- #1
FrogPad
- 810
- 0
In my emag course we are reviewing vector calculus. I've forgotton a lot over the summer, so I just want to make sure I'm doing this properly.
question)
[tex] \vec E = \hat x y + \hat y x [/tex]
Evaluate [itex] \int \vec E \cdot d\vec l [/itex] from [itex] P_1(2,1,-1) [/itex] to [itex] P_2(8,2,-1) [/itex] along the parabola [itex] x = 2y^2 [/itex].
sol)
We are in cartesian coordinates, thus:
[tex] d\vec l = \hat x dx + \hat y dy [/tex]
[tex] \vec E \cdot d\vec l = ydx + xdy [/tex]
Our path is:
[tex] x=2y^2 [/tex]
[tex] y=\sqrt{\frac{x}{2}}[/tex]
Thus,
[tex] \int_2^8 \sqrt{\frac{x}{2}}\,\,dx + \int_1^2 2y^2 \,\,dy = \frac{28}{3}+\frac{14}{3}=14 [/tex]Does everything look ok?
question)
[tex] \vec E = \hat x y + \hat y x [/tex]
Evaluate [itex] \int \vec E \cdot d\vec l [/itex] from [itex] P_1(2,1,-1) [/itex] to [itex] P_2(8,2,-1) [/itex] along the parabola [itex] x = 2y^2 [/itex].
sol)
We are in cartesian coordinates, thus:
[tex] d\vec l = \hat x dx + \hat y dy [/tex]
[tex] \vec E \cdot d\vec l = ydx + xdy [/tex]
Our path is:
[tex] x=2y^2 [/tex]
[tex] y=\sqrt{\frac{x}{2}}[/tex]
Thus,
[tex] \int_2^8 \sqrt{\frac{x}{2}}\,\,dx + \int_1^2 2y^2 \,\,dy = \frac{28}{3}+\frac{14}{3}=14 [/tex]Does everything look ok?
Last edited: