- #1
trgoostrey
- 3
- 0
Hello,
My physics class is doing the classic egg drop experiment, but with a different twist.
We are asked to find the length of the bungee cord needed given a mass and a height to drop it from. The success of the lab is determined by how close we can get to the ground without touching.
We are using a single bungee cord, and not multiple bungees.
This is a common question here, but I haven't been able to determine the equations to use to determine what I need.
I have tried using U1 + K1 = U2 + K2 +Uspring
Where U1 is the initial potential energy (mgh1)
K1 is the initial kinetic energy (K1 = 0)
U2 is the final kinetic energy (mgh2 with h2 being the closest distance off the ground)
K2 is the final kinetic energy (K2 = 0)
And Uspring is the integral of Force with respect to distance F(x) from 0 to the unstretched bungee length - h2
Our F(x) function is 2.823 - 6.696x + 31.64x^2 - 110.9x^3 + 177.3x^4 - 103.3x^5
This is the characteristic that our bungee follows.
Using this, I get the correct value, if the egg wasn't dropped, but rather if the egg was just hanging there.
My question is, what am I doing wrong? and what equations/principles could I use to determine the length of the string that I need?
My physics class is doing the classic egg drop experiment, but with a different twist.
We are asked to find the length of the bungee cord needed given a mass and a height to drop it from. The success of the lab is determined by how close we can get to the ground without touching.
We are using a single bungee cord, and not multiple bungees.
This is a common question here, but I haven't been able to determine the equations to use to determine what I need.
I have tried using U1 + K1 = U2 + K2 +Uspring
Where U1 is the initial potential energy (mgh1)
K1 is the initial kinetic energy (K1 = 0)
U2 is the final kinetic energy (mgh2 with h2 being the closest distance off the ground)
K2 is the final kinetic energy (K2 = 0)
And Uspring is the integral of Force with respect to distance F(x) from 0 to the unstretched bungee length - h2
Our F(x) function is 2.823 - 6.696x + 31.64x^2 - 110.9x^3 + 177.3x^4 - 103.3x^5
This is the characteristic that our bungee follows.
Using this, I get the correct value, if the egg wasn't dropped, but rather if the egg was just hanging there.
My question is, what am I doing wrong? and what equations/principles could I use to determine the length of the string that I need?