- #1
Mathman23
- 254
- 0
Hi
Given a 3x3 matrix
[tex]A = \[ \left[ \begin{array}{ccc} 0 & 0 & 1+2i \\ 0 & 5 & 0 \\ 1-2i & 0 & 4 \end{array} \right][/tex]
I need to a another 3x3 which satisfacies
D = U^-1 A U
Step 1.
Finding the eigenvalues
[tex]0 = det(A- \lambda I ) = (0- \lambda)(\lambda - 5) (\lambda -4 ), \lambda = 5,4,0[/tex]
step 2.
Finding the eigenvectors.
A vector which satisfies (A-\lambda I) v = 0
For \lambda = 5
p(\lambda = 5) = [tex] \[ \left[ \begin{array}{ccc} -5 & 0 & 1+2i \\ 0 & 0 & 0 \\ 1-2i & 0 & -1 \end{array} \right][/tex] ~ [tex]\[ \left[ \begin{array}{ccc} 1 & 0 & -1/5-2/5i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right][/tex]
How do I read the eigenvector from the reduced matrix ?
Sincerely Fred
Given a 3x3 matrix
[tex]A = \[ \left[ \begin{array}{ccc} 0 & 0 & 1+2i \\ 0 & 5 & 0 \\ 1-2i & 0 & 4 \end{array} \right][/tex]
I need to a another 3x3 which satisfacies
D = U^-1 A U
Step 1.
Finding the eigenvalues
[tex]0 = det(A- \lambda I ) = (0- \lambda)(\lambda - 5) (\lambda -4 ), \lambda = 5,4,0[/tex]
step 2.
Finding the eigenvectors.
A vector which satisfies (A-\lambda I) v = 0
For \lambda = 5
p(\lambda = 5) = [tex] \[ \left[ \begin{array}{ccc} -5 & 0 & 1+2i \\ 0 & 0 & 0 \\ 1-2i & 0 & -1 \end{array} \right][/tex] ~ [tex]\[ \left[ \begin{array}{ccc} 1 & 0 & -1/5-2/5i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right][/tex]
How do I read the eigenvector from the reduced matrix ?
Sincerely Fred
Last edited: