- #1
TanWu
- 17
- 5
- Homework Statement
- Show that if ##\alpha## is an eigenvalue of matrix ##B## then ##\alpha^{n}## is an eigenvalue of matrix ##B^{n}## for positive integer ##n##
- Relevant Equations
- ##\alpha## is eigenvalue
##B\vec x = \alpha \vec x##
We consider base case (##n = 1##), ##B\vec x = \alpha \vec x##, this is true, so base case holds.
Now consider case ##n = 2##, then ##B^2\vec x = B(B\vec x) = B(\alpha \vec x) = \alpha(B\vec x) = \alpha(\alpha \vec x) = \alpha^2 \vec x##
Now consider ##n = m## case,
##B^m\vec x = B(B^{m - 1} \alpha) = B^m \alpha = \alpha^m \vec x##
Now consider ##n = m + 1## case,
##B^{m + 1}\alpha = B(B^m \alpha) = B(\alpha^m \vec x) = \alpha^m(B\vec x) = \alpha^k(\alpha \vec x) = \alpha^{m + 1}\vec x##
Is that correct use of induction?
gratitude expressed to those who help.
Now consider case ##n = 2##, then ##B^2\vec x = B(B\vec x) = B(\alpha \vec x) = \alpha(B\vec x) = \alpha(\alpha \vec x) = \alpha^2 \vec x##
Now consider ##n = m## case,
##B^m\vec x = B(B^{m - 1} \alpha) = B^m \alpha = \alpha^m \vec x##
Now consider ##n = m + 1## case,
##B^{m + 1}\alpha = B(B^m \alpha) = B(\alpha^m \vec x) = \alpha^m(B\vec x) = \alpha^k(\alpha \vec x) = \alpha^{m + 1}\vec x##
Is that correct use of induction?
gratitude expressed to those who help.
Last edited by a moderator: