- #1
unscientific
- 1,734
- 13
Homework Statement
Part (a): Find the eigenvalues and eigenvectors of matrix A:
[tex]
\left(
\begin{array}{cc}
2 & 0 & -1\\
0 & 2 & -1\\
-1 & -1 & 3 \\
\end{array}
\right)
[/tex]Part(b): Find the eigenvalues and eigenvectors of matrix ##B = e^{3A} + 5I##.
Homework Equations
The Attempt at a Solution
Part (a)
[tex]\lambda = 1, 2, 4[/tex]
[tex] u_1 = \frac{1}{\sqrt3}(1,1,1)[/tex]
[tex]u_2 = \frac{1}{\sqrt 2}(1,-1,0)[/tex]
[tex]u_3 = \frac{1}{\sqrt 5}(1,1,-2)][/tex]
Part(b)
Realize A is a hermitian matrix.
Diagonalize A:
[tex] A'=
\left(
\begin{array}{cc}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 4 \\
\end{array}
\right)
[/tex]
[tex] B' = exp(3A') + 5I[/tex]
Therefore, eigenvalues of ##B'= e+5, e^2 + 5, e^4+5##. Also, eigenvalues of B = B'.
How do I find the eigenvectors of B? Do I need to undiagonalize B' using the transformation matrix made up of eigenvectors of A?