- #1
MrAlbot
- 12
- 0
Hello guys, is there any way someone can explain to me in resume what eigen values and eigenvectors are because I don't really recall this theme from linear algebra, and I'm not getting intuition on where does Fourier transform comes from.
my teacher wrote:
A[itex]\overline{v}[/itex] = λ[itex]\overline{v}[/itex]
then he said that for a vector [itex]\overline{x}[/itex]
[itex]\overline{x}[/itex] = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] xi [itex]\overline{e}[/itex]i
and he calls this [itex]\overline{ei}[/itex] the inicial ortonormal base
the he says that this is equal to
[itex]\overline{x}[/itex] = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i [itex]\overline{v}[/itex]i
where [itex]\overline{v}[/itex]i is the base of the eigenvectors of A
then he says that y=A[itex]\overline{x}[/itex]
[itex]\overline{y}[/itex] = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] yi [itex]\overline{e}[/itex]i = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{y}[/itex]i [itex]\overline{v}[/itex]i = A[itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i [itex]\overline{v}[/itex]i = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] A[itex]\widehat{x}[/itex]i [itex]\overline{v}[/itex]i = itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i A [itex]\overline{v}[/itex]i = as A[itex]\overline{v}[/itex]i is λ[itex]\overline{v}[/itex]i = itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i λi [itex]\overline{v}[/itex]i
So we get that [itex]\widehat{x}[/itex]i λ = [itex]\widehat{y}[/itex]i
I Would like to know the intuition behind this and how it relates to the Fourier Series/ Fourier Transform.
I'd really apreciate not to go into deep mathematics once I have very very weak Linear Algebra bases and I will have to waste some time relearning it, but unfortunately I don't have time now.
Hope someone can help!
Thanks in advance!
Pedro
my teacher wrote:
A[itex]\overline{v}[/itex] = λ[itex]\overline{v}[/itex]
then he said that for a vector [itex]\overline{x}[/itex]
[itex]\overline{x}[/itex] = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] xi [itex]\overline{e}[/itex]i
and he calls this [itex]\overline{ei}[/itex] the inicial ortonormal base
the he says that this is equal to
[itex]\overline{x}[/itex] = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i [itex]\overline{v}[/itex]i
where [itex]\overline{v}[/itex]i is the base of the eigenvectors of A
then he says that y=A[itex]\overline{x}[/itex]
[itex]\overline{y}[/itex] = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] yi [itex]\overline{e}[/itex]i = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{y}[/itex]i [itex]\overline{v}[/itex]i = A[itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i [itex]\overline{v}[/itex]i = [itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] A[itex]\widehat{x}[/itex]i [itex]\overline{v}[/itex]i = itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i A [itex]\overline{v}[/itex]i = as A[itex]\overline{v}[/itex]i is λ[itex]\overline{v}[/itex]i = itex]\sum^{n}[/itex] [itex]_{i=1}[/itex] [itex]\widehat{x}[/itex]i λi [itex]\overline{v}[/itex]i
So we get that [itex]\widehat{x}[/itex]i λ = [itex]\widehat{y}[/itex]i
I Would like to know the intuition behind this and how it relates to the Fourier Series/ Fourier Transform.
I'd really apreciate not to go into deep mathematics once I have very very weak Linear Algebra bases and I will have to waste some time relearning it, but unfortunately I don't have time now.
Hope someone can help!
Thanks in advance!
Pedro