- #1
bugatti79
- 794
- 1
Hi Folks,
I calculate the eigenvalues of [tex]\begin{bmatrix}\cos \theta& \sin \theta \\ - \sin \theta & \cos \theta \end{bmatrix}[/tex] to be [tex]\lambda_1=e^{i \theta}[/tex] and [tex]\lambda_2=e^{-i \theta}[/tex]
for [tex]\lambda_1=e^{i \theta}=\cos \theta + i \sin \theta[/tex] I calculate the eigenvector via [tex]A \lambda = \lambda V[/tex] as
[tex]\begin{bmatrix}\cos -(\cos \theta+ i \sin \theta) & \sin \theta \\ - \sin \theta & \cos -(\cos \theta+ i \sin \theta)\end{bmatrix} \begin{bmatrix}v_1\\ v_2\end{bmatrix}=\vec{0}[/tex]
which reduces to
[tex]- i \sin \theta v_1+ \sin \theta v_2=0[/tex]
[tex]-\sin \theta v_1-i \sin \theta v_2=0[/tex]
I am stumped at this point...how shall I proceed?
I calculate the eigenvalues of [tex]\begin{bmatrix}\cos \theta& \sin \theta \\ - \sin \theta & \cos \theta \end{bmatrix}[/tex] to be [tex]\lambda_1=e^{i \theta}[/tex] and [tex]\lambda_2=e^{-i \theta}[/tex]
for [tex]\lambda_1=e^{i \theta}=\cos \theta + i \sin \theta[/tex] I calculate the eigenvector via [tex]A \lambda = \lambda V[/tex] as
[tex]\begin{bmatrix}\cos -(\cos \theta+ i \sin \theta) & \sin \theta \\ - \sin \theta & \cos -(\cos \theta+ i \sin \theta)\end{bmatrix} \begin{bmatrix}v_1\\ v_2\end{bmatrix}=\vec{0}[/tex]
which reduces to
[tex]- i \sin \theta v_1+ \sin \theta v_2=0[/tex]
[tex]-\sin \theta v_1-i \sin \theta v_2=0[/tex]
I am stumped at this point...how shall I proceed?