- #1
sph711
- 2
- 1
- TL;DR Summary
- Looking for a derivation or proof that the eigenvectors of the effective permittivity tensor of a periodic dielectric structure align with the principal axis of the crystal symmetry of said periodic strucutre.
Hi all,
(first post here :D)
I am working on periodic dielectric structures in the long-wavelength limit (wavelength much larger than the periodicity). In the long wavelength limit the periodic strucutre can be homogonized and described via an effective permittivity (or refractive index) tensor.
I think it would make sense that the eigenvectors of said homogenized permittivity tensor would correspond to the principal axis of the crystal symmetry of the periodic structures. This also corresponds well with what I am seeing in my simulations. However, I cannot think of a way to show this formally.
Could anybody point me to an existing proof or guide me in how to approach the problem mathematically?
(first post here :D)
I am working on periodic dielectric structures in the long-wavelength limit (wavelength much larger than the periodicity). In the long wavelength limit the periodic strucutre can be homogonized and described via an effective permittivity (or refractive index) tensor.
I think it would make sense that the eigenvectors of said homogenized permittivity tensor would correspond to the principal axis of the crystal symmetry of the periodic structures. This also corresponds well with what I am seeing in my simulations. However, I cannot think of a way to show this formally.
Could anybody point me to an existing proof or guide me in how to approach the problem mathematically?