- #1
Hill
- 725
- 573
- Homework Statement
- Prove Eisenstein's criterion, see below
- Relevant Equations
- ##a_n X^n + ... + a_0 = (b_k X^k + ...+ b_0)(c_m X^m+ ... +c_0)##
My solution:
Assume it is reducible, i.e., ##a_n X^n + ... + a_0 = (b_k X^k + ...+ b_0)(c_m X^m+ ... +c_0)##.
##a_0=b_0 c_0##. Since ##p \mid a_0##, either ##p \mid b_0## or ##p \mid c_0##, but not both, because ##p^2 \nmid a_0##. Assume ##p \mid b_0, p \nmid c_0##.
##a_1=b_0 c_1+b_1 c_0##.
##p \mid a_1, p \mid b_0, p \nmid c_0 \Rightarrow p \mid b_1##.
Continuing the same steps up the powers, we get ##p \mid b_k##. But since ##a_n=b_k c_m## it makes ##p \mid a_n##, which contradicts the statement, ##p \nmid a_n##.
The book hints to reduce the coefficients ##a_i, b_i, c_i## modulo p and to consider the relation between the reduced polynomials. I can convert my solution using this hint as follows:
After the reduction modulo p, we get ##\bar a_n X^n = (\bar b_k X^k + ...+ \bar b_0)(\bar c_m X^m+ ... +\bar c_0)##.
##0=\bar b_0 \bar c_0##. Then, either ##\bar b_0=0## or ##\bar c_0=0##, but not both, because ##p^2 \nmid a_0##. Assume ##\bar b_0=0 , \bar c_0 \neq 0##.
##0=\bar b_1 \bar c_0 \Rightarrow \bar b_1=0##. Etc. until ##\bar a_n=0## which leads to contradiction.
I wonder if the book's suggestion allows for another, better proof that I don't see.
??