Ejected out from an accelerating spaceship

In summary, "Ejected out from an accelerating spaceship" explores the physical and psychological effects of being forcefully removed from a spacecraft that is rapidly increasing its velocity. The narrative delves into the challenges faced by the individual, including the risks of exposure to space, the impact of sudden deceleration, and the struggle for survival in a hostile environment. It highlights the themes of isolation, the fragility of human life, and the consequences of space travel.
  • #1
brotherbobby
702
163
Homework Statement
Bond and Scaramanga get into a helicopter which begins to accelerate upward at ##a\;\text{m/s}^2## for ##3\;\text{s}## at which point Scaramanga gets thrown out. He bites the dust ##4.92\;\text{s}## after liftoff. (i) What was ##a##? (ii) From what height did Scaramanga get ejected?
Relevant Equations
The kinematic equations for uniform acceleration ##a_0## where all terms have their usual meanings. Just note that ##x(t_0)=x_0## and that ##v(t_0)=v_0##. We can choose ##t_0=0## here.
\begin{align}
&v(t)=v_0+a_0(t-t_0)\\
&x=x_0+v_0(t-t_0)+\dfrac{1}{2}a_0(t-t_0)^2\\
&v^2(x)=v^2_0+2a_0(x-x_0)\\
\end{align}
1706995101569.png
Let me copy and paste the problem as it appeared in the text to the right.




1706995131145.png
I start by drawing the diagram of the problem. Scaramanga (drawn as S) gets thrown out with a speed ##v_0## at time ##t_1=3\;\text{s}## from the helicopter which is accelerating at ##a\;\text{m/s}^2## starting from rest from the ground. After a time of ##t_2=1.92\;\text{s}## from then, S reaches the ground. Using equation ##(2)## above, we can write $$-h=v_0t_2-\frac{1}{2}gt_2^2\qquad\text{(4)}$$where using ##(1)##, ##v_0=at_1## and using ##(2)## again ##h=\frac{1}{2}at_1^2##.
Substituting in ##(4)##,
\begin{align*}
-\frac{1}{2}at_1^2 &= at_1t_2-\frac{1}{2}gt_2^2\\
\Rightarrow \frac{1}{2}gt_2^2 &= at_1t_2+\frac{1}{2}at_1^2\\
\Rightarrow a(t_1t_2+\frac{1}{2}t_1^2) &=\frac{1}{2}gt_2^2\\
\Rightarrow at_1(2t_2+t_1)&=gt_2^2\\
\Rightarrow a &= \dfrac{gt_2^2}{t_1(2t_2+t_1)}\\
\Rightarrow a &= \dfrac{10\times 1.92^2}{3(2\times 1.92+3)}\\
\Rightarrow &\boxed{a=2.54\;\text{m/s}^2}
\end{align*}
The height at which the throwing off took place : ##h = \frac{1}{2}at_1^2=\frac{1}{2}\times 2.54\times 3^2=\boxed{11.43\;\text{m}}##

1706995168209.png
Doubt : The problems don't match with those in the text that I copy and paste to the right.

Request : I'd like to know where have I gone wrong. Was it in the meaning of the term "liftoff"?
 
Physics news on Phys.org
  • #2
brotherbobby said:
Homework Statement: Bond and Scaramanga get into a helicopter which begins to accelerate upward at ##a\;\text{m/s}^2## for ##3\;\text{s}## at which point Scaramanga gets thrown out. He bites the dust ##4.92\;\text{s}## after liftoff. (i) What was ##a##? (ii) From what height did Scaramanga get ejected?
Relevant Equations: The kinematic equations for uniform acceleration ##a_0## where all terms have their usual meanings. Just note that ##x(t_0)=x_0## and that ##v(t_0)=v_0##. We can choose ##t_0=0## here.
\begin{align}
&v(t)=v_0+a_0(t-t_0)\\
&x=x_0+v_0(t-t_0)+\dfrac{1}{2}a_0(t-t_0)^2\\
&v^2(x)=v^2_0+2a_0(x-x_0)\\
\end{align}

View attachment 339718Let me copy and paste the problem as it appeared in the text to the right.




View attachment 339719I start by drawing the diagram of the problem. Scaramanga (drawn as S) gets thrown out with a speed ##v_0## at time ##t_1=3\;\text{s}## from the helicopter which is accelerating at ##a\;\text{m/s}^2## starting from rest from the ground. After a time of ##t_2=1.92\;\text{s}## from then, S reaches the ground. Using equation ##(2)## above, we can write $$-h=v_0t_2-\frac{1}{2}gt_2^2\qquad\text{(4)}$$where using ##(1)##, ##v_0=at_1## and using ##(2)## again ##h=\frac{1}{2}at_1^2##.
Substituting in ##(4)##,
\begin{align*}
-\frac{1}{2}at_1^2 &= at_1t_2-\frac{1}{2}gt_2^2\\
\Rightarrow \frac{1}{2}gt_2^2 &= at_1t_2+\frac{1}{2}at_1^2\\
\Rightarrow a(t_1t_2+\frac{1}{2}t_1^2) &=\frac{1}{2}gt_2^2\\
\Rightarrow at_1(2t_2+t_1)&=gt_2^2\\
\Rightarrow a &= \dfrac{gt_2^2}{t_1(2t_2+t_1)}\\
\Rightarrow a &= \dfrac{10\times 1.92^2}{3(2\times 1.92+3)}\\
\Rightarrow &\boxed{a=2.54\;\text{m/s}^2}
\end{align*}
The height at which the throwing off took place : ##h = \frac{1}{2}at_1^2=\frac{1}{2}\times 2.54\times 3^2=\boxed{11.43\;\text{m}}##

View attachment 339720Doubt : The problems don't match with those in the text that I copy and paste to the right.

Request : I'd like to know where have I gone wrong. Was it in the meaning of the term "liftoff"?
Your interpretation seems correct to me.
 
  • Like
Likes PeroK, MatinSAR and TSny
  • #3
@brotherbobby : The answers given in the text appear to come from assuming that S has zero velocity relative to the ground just after being thrown out of the helicopter. We don't have information about how S was thrown out. But, your assumption that S has zero velocity relative to the helicopter seems more reasonable. I agree with your answers.
 
  • Like
Likes MatinSAR and erobz
  • #4
Is this yet another question concocted by someone who doesn't actually understand physics?
 
  • Like
Likes erobz
  • #5
PeroK said:
Is this yet another question concocted by someone who doesn't actually understand physics?
The flaw in the supposed answer has been discussed here. After solving this problem, I agree with EulerJr's numerical answer of 1.76 m/s2 in the reddit.com link and disagree with @brotherbobby's answer of 2.54 m/s2.
 
  • Like
Likes PeroK and TSny
  • #6
kuruman said:
The flaw in the supposed answer has been discussed here. After solving this problem, I agree with EulerJr's numerical answer of 1.76 m/s2 in the reddit.com link and disagree with @brotherbobby's answer of 2.54 m/s2.
Yes, am sorry, I made calculation errors. The acceleration of the spaceship is ##a = 1.76\;\rm{m/s^2}## and the height of ejection is ##\dfrac{1}{2}\times 1.76\times 3^2 = \rm{7.92\; m}##.

The crucial point of the exercise was the author's mistake. He assumed that an object thrown out of a moving vehicle is at rest relative to ground and not at rest relative to the vehicle.
 

Attachments

  • 1707152566743.png
    1707152566743.png
    6.6 KB · Views: 54
  • Like
Likes TSny, kuruman and erobz

FAQ: Ejected out from an accelerating spaceship

What happens to an object ejected from an accelerating spaceship?

An object ejected from an accelerating spaceship will initially retain the velocity it had at the moment of ejection. If the spaceship is accelerating, the object will appear to decelerate relative to the spaceship because it no longer experiences the same thrust.

Will the object continue to move in the same direction after ejection?

Yes, the object will continue to move in the same direction it was traveling at the moment of ejection. However, it will no longer accelerate with the spaceship and will follow a path determined by its initial velocity and external forces like gravity.

Does the object experience any forces after being ejected?

Once ejected, the object will primarily be influenced by external forces such as gravitational fields from nearby celestial bodies. In the absence of such forces, it will continue in uniform motion according to Newton's First Law of Motion.

How does the relative velocity between the spaceship and the object change over time?

The relative velocity between the spaceship and the object will increase over time if the spaceship continues to accelerate. The object will appear to fall behind the spaceship at a rate proportional to the spaceship's acceleration.

Can the object re-enter the spaceship after being ejected?

Re-entering the spaceship after ejection is extremely challenging and would require precise maneuvering. The object would need to match the spaceship's velocity and trajectory, which typically requires propulsion and careful calculation.

Back
Top