- #1
Observer Two
- 25
- 0
Homework Statement
I want to varify that the components of a homogenous electric field in spherical coordinates [itex]\vec{E} = E_r \vec{e}_r + E_{\theta} \vec{e}_{\theta} + E_{\varphi} \vec{e}_{\varphi}[/itex] are given via:
[itex]E_r = - \sum\limits_{l=0}^\infty (l+1) [a_{l+1}r^l P_{l+1}(cos \theta) - b_l r^{-(l+2)} P_l cos(\theta)][/itex]
[itex]E_{\theta} = \sum\limits_{l=0}^\infty [a_{l+1}r^l + b_{l+1} r^{-(l+3)}]sin(\theta)P'_{l+1}(cos \theta)[/itex]
[itex]E_{\varphi} = 0[/itex]
I have rotational symmetry about the z-axis (azimuthal symmetry).
Homework Equations
I know that the potential in charge-free space and with azimuthal symmetry can be given via the Legendre Polynomials:
[itex]\Phi(r, \theta) = \sum\limits_{l=0}^\infty (a_l r^l + b_l r^{-(l+1)}) P_l(cos \theta)[/itex]
The Attempt at a Solution
Let's begin with [itex]E_r[/itex].
[itex]\vec{E} \vec{e}_r = E_r[/itex]
And:
[itex]\vec{E} = - \nabla \Phi[/itex]
So basically what I have to do is apply the gradient (in spherical coordinates) and multiply with [itex]\vec{e}_r[/itex]. In other words: Apply the [itex]\vec{e}_r[/itex] component of the gradient to the potential. Is this correct? If so: How exactly do I apply the gradient to a sum like (2)?