- #1
Est120
- 54
- 3
- TL;DR Summary
- How the electric field varies around a circuit?
We know that E is conservative so the integral of E around a closed loop is zero. I know this helps us (in some way, that's why i'm asking) to calculate the total voltage drop around the complete circuit (which is zero).
What exactly is "E" in the integral? For example, internet says "electric field is zero inside a conductor" so, then what? E. dl = 0 and we are integrating zero around the closed loop. There's nothing interesting there.
Inside a battery for example there is a non-conservative E, which can't be used in the integral formula.
There must be an electric field inside the conductor in some way, something must push charges.
I would want to know an explanation (that makes sense) of int( E.dl) = 0 and how that relates to the change in voltage around the closed circuit.
What exactly is "E" in the integral? For example, internet says "electric field is zero inside a conductor" so, then what? E. dl = 0 and we are integrating zero around the closed loop. There's nothing interesting there.
Inside a battery for example there is a non-conservative E, which can't be used in the integral formula.
There must be an electric field inside the conductor in some way, something must push charges.
I would want to know an explanation (that makes sense) of int( E.dl) = 0 and how that relates to the change in voltage around the closed circuit.