Electric field calculation doubt (dipole)

In summary, the student is struggling with understanding the concept of calculating electric fields in different positions and the role of charge signs in these calculations. They have attempted to solve a problem and gotten a different result than expected, leading to confusion about the correct method and whether a video explaining the topic may be incorrect. Some advice is given on approaching the problem in a more general way and the importance of showing work clearly when seeking help.
  • #1
rbsann
3
0
Member advised to use the homework template for posts in the homework sections of PF.
Hello all, i am having a hard time with EM, specially with the most simple concepts that i don't seem to grasp at all and the simple exercises that should be quite simple to solve.

So the question is. ( i will omit the constant (1/4pieo) for practice sake

When i calculate the eletric field, first i determine the r (distance vector) just like i learned in this instructional video (). The example given is to calculate the electric field on the y-axis due to two point charges on the x axis, with opposite signs.

Then i do: E1= q(-xi+yj) / ((x2+y2))3/2
E2=-q
(xi+yj) /((x2+y2))3/2

That works just fine and i get the resultant E from the vector sum of each E. But that method is not working when i have to calculate the eletric field on the x axis.

In this exercise, that is giving me trouble. i have to determine E in a x point between a and -a ( positions of q and -x) respectively. I can see, quite easily, that the resultant vector should be pointing to -i axis, but i can't get at the teacher answer. My attempt at solving:

E1=q*(x-a)i/(x-a)3
E2=-q(x+a)i/(x+a)3

Summing those two give a different result, that should be: -2q*(x2+a2) divided by ((x-a))4

Where exactly is my mistake?

Thanks in advance
 
Physics news on Phys.org
  • #2
Hello rbsan, :welcome:

Do not delete the template. Use it (it's compulsory -- and it's good for you too).
rbsann said:
Where exactly is my mistake?
Here at PF we try to let folks fence for themselves as much as possible -- that way they often manage subsequent exercises all on their own :smile: . So:

rbsann said:
Summing those two give a different result
Mistake must be there then. Could you show your working ?
 
  • Like
Likes rbsann
  • #3
BvU said:
Hello rbsan, :welcome:

Do not delete the template. Use it (it's compulsory -- and it's good for you too).

Here at PF we try to let folks fence for themselves as much as possible -- that way they often manage subsequent exercises all on their own :smile: . So:

Mistake must be there then. Could you show your working ?

Sorry about not using the template! Next time i will use it.

The calculations are fine.

It seems that if i input both charge as if they were negative:
E1=-q/(x-a)^2
E2=-q/(x+a)^2
i get the correct answer.

That makes sense in a vector sense (both electric field lines are pointing along the -i axis) but solving this way i completely ignore the charge sign.
And it is not compatible with the solution method taught by that instructional video.

Is that video wrong?
Should i always disregard charge sign when calculating electric field and only take into consideration the direction E is pointing to?
 
  • #4
If you are just approaching the subject I think it would be more meaningful to try derive the electric field in a generic point (x,y,z) and move from there, cause there's some interesting insights you can get by working from the general cases down to the specific ones.
Once you have an expression for E(x,y,z), you can narrow it down to the x-axis as E(x,0,0), and then restrict it to -a<x<a.

Anyway, I didn't understand if this formula
-2q*(x2+a2) divided by ((x-a))4
is what you actually get from your calculations or what you should get; because you can clearly say it's not correct just by looking at the denominator: you have [itex](x-a)^2[/itex] and [itex](x+a)^2[/itex] as denominators of your E fields, and there's no way you can turn it into [itex](x-a)^4[/itex].
So, in the first case, you should just check your calculations; in the second one, your source made an error.

rbsann said:
That makes sense in a vector sense (both electric field lines are pointing along the -i axis) but solving this way i completely ignore the charge sign.
Are you sure you are ignoring the charge sign? What is it that defines the direction of the electric field then? How can you say they are directed along the negative x-axis if you ignore the charge? :biggrin:
Trying to find a way around to get the correct result is a good thing I guess, but you should also be careful and understand why it works, otherwise its just cheating :rolleyes:

By the way, if you do not show clearly what result you got, and how you got it, most people will have a hard time trying to help you in a meaningful way.
 
  • #5
mastrofoffi said:
If you are just approaching the subject I think it would be more meaningful to try derive the electric field in a generic point (x,y,z) and move from there, cause there's some interesting insights you can get by working from the general cases down to the specific ones.
Once you have an expression for E(x,y,z), you can narrow it down to the x-axis as E(x,0,0), and then restrict it to -a<x<a.

Anyway, I didn't understand if this formula is what you actually get from your calculations or what you should get; because you can clearly say it's not correct just by looking at the denominator: you have [itex](x-a)^2[/itex] and [itex](x+a)^2[/itex] as denominators of your E fields, and there's no way you can turn it into [itex](x-a)^4[/itex].
So, in the first case, you should just check your calculations; in the second one, your source made an error.Are you sure you are ignoring the charge sign? What is it that defines the direction of the electric field then? How can you say they are directed along the negative x-axis if you ignore the charge? :biggrin:
Trying to find a way around to get the correct result is a good thing I guess, but you should also be careful and understand why it works, otherwise its just cheating :rolleyes:

By the way, if you do not show clearly what result you got, and how you got it, most people will have a hard time trying to help you in a meaningful way.

Yes that was my input mistake, the correct input is (x^2-a^2)^2 ( sorry for bad input)

Yes i know that in thesis i am not actually ignoring the charge sign when i draw the field lines, since the negative charges point towards themselves from the observational point;- and positive charges point towards the observational point.

But what i am doubt with is that if i need to not only take that into consideration but also it's sign on the algebraic formula.

''Trying to find a way around to get the correct result is a good thing I guess, but you should also be careful and understand why it works, otherwise its just cheating ''

That is true and i am guilty of that :(
But unfortunately sometimes i first learn how to solve the exercises and then i actually understand the concept. I wish i would always grasp the concept at first, but some stuff take a while to digest. ( for me at least)
 
  • #6
rbsann said:
But what i am doubt with is that if i need to not only take that into consideration but also it's sign on the algebraic formula.

Let's see the formula then: if you have N electric fields, generated by N charges, superposition principle allows you to sum them all up:
$$
\vec{E} = \sum_{i=1}^N\vec{E}_i
$$
Now you will just have to apply a basic vector sum. Just be careful when working with vectors and there will be no sign ambiguities.
If you have doubts, forget the E fields for a moment and consider 2 vectors, $$\vec{a} = a\hat{i}$$ and $$\vec{b}=-b\hat{i}$$ where both a and b are positive. What's their vector sum?

rbsann said:
I wish i would always grasp the concept at first, but some stuff take a while to digest. ( for me at least)
It's all normal, physics takes time. I am a student and I can definitely relate. Just be patient, take your time, read, practice, hit your head against the wall, and every piece will fit, eventually ^^
 

FAQ: Electric field calculation doubt (dipole)

What is an electric field?

An electric field is a physical quantity that describes the force experienced by a charged particle in the presence of other charged particles. It is a vector field, which means it has both magnitude and direction.

How is an electric field calculated?

The electric field is calculated by dividing the force exerted on a charge by the charge itself. This can be represented mathematically as E = F/q, where E is the electric field, F is the force, and q is the charge.

What is a dipole in an electric field?

A dipole is a pair of equal and opposite charges that are separated by a small distance. In an electric field, a dipole experiences a torque or rotational force, causing it to align with the direction of the electric field.

How do you calculate the electric field of a dipole?

The electric field of a dipole can be calculated by adding the individual electric fields of the two charges. The magnitude of the field is given by E = (1/4πε0) * (q/r2), where q is the charge, r is the distance from the charge, and ε0 is the permittivity of free space.

Can the electric field of a dipole be zero?

Yes, the electric field of a dipole can be zero. This occurs when the two charges in the dipole are equal and opposite and are located at equal distances from the point where the electric field is being measured.

Back
Top