Electric field due to polarized object

In summary, the electric field is equal for two objects of the same size and shape if the conditions of polarization are satisfied, which can be proven through a standard proof using the potential of a dipole and defining surface and volume charge densities.
  • #1
VVS2000
150
17
TL;DR Summary
So I am given the conditions necessary for the electric field to be equal for given two objects of same size and shape, one of which is polarized and the other has some surface and volume charge densities as shown in the diagram
16377788745095814392662940793349.jpg
16377789157864281810467250891417.jpg
 
Physics news on Phys.org
  • #2
VVS2000 said:
Summary:: So I am given the conditions necessary for the electric field to be equal for given two objects of same size and shape, one of which is polarized and the other has some surface and volume charge densities as shown in the diagram

View attachment 292998View attachment 292999
So you are. Is there a question you wish to ask?
 
  • #3
kuruman said:
So you are. Is there a question you wish to ask?
Yeah, they have mentioned the given 2 conditions regarding polarization must be satisfied for electric fields of the given 2 objects to be equal
I still don't know how
 
  • #4
The justification is a standard proof. You might have come across the potential of a dipole ##\phi(\mathbf{r}) = \dfrac{\mathbf{p} \cdot \mathbf{r}}{4\pi \epsilon_0 r^3}##. Therefore if a material has a dipole moment per unit volume ##\mathbf{P} = \dfrac{d\mathbf{p}}{dV}##, the dipole potential is\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\mathbf{P}(\mathbf{R}) \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3} d^3 \mathbf{R}
\end{align*}where ##\mathbf{R}## is the integration variable over the source charge distribution (contained with in ##\mathscr{V}##). Letting ##\nabla_{\mathbf{R}} = \left( \frac{\partial}{\partial R_x}, \frac{\partial}{\partial R_y}, \frac{\partial}{\partial R_z} \right)## denote differentiation with respect to the coordinates of ##\mathbf{R}##, notice now that\begin{align*}
\nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} &= \sum_i \dfrac{\partial}{\partial R_i} \dfrac{P_i(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{\partial}{\partial R_i} \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \right] \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{(\mathbf{r} - \mathbf{R})_i}{|\mathbf{r} - \mathbf{R}|^3} \right] \\
&= \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} + \dfrac{\mathbf{P} \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3}
\end{align*}and therefore\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}}\left[ \nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} - \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \right] d^3 \mathbf{R} \\
&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \cdot \hat{\mathbf{n}} dS- \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R} \\

&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\sigma_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} dS + \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\rho_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R}
\end{align*}upon defining ##\sigma_{\mathrm{b}} \equiv \mathbf{P} \cdot \hat{\mathbf{n}}## and ##\rho_{\mathrm{b}} \equiv - \nabla_{\mathbf{R}} \cdot \mathbf{P}##.
 
Last edited:
  • Like
Likes Astronuc, berkeman, TSny and 1 other person
  • #5
ergospherical said:
The justification is a standard proof. You might have come across the potential of a dipole ##\phi(\mathbf{r}) = \dfrac{\mathbf{p} \cdot \mathbf{r}}{4\pi \epsilon_0 r^3}##. Therefore if a material has a dipole moment per unit volume ##\mathbf{P} = \dfrac{d\mathbf{p}}{dV}##, the dipole potential is\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\mathbf{P}(\mathbf{R}) \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3} d^3 \mathbf{R}
\end{align*}where ##\mathbf{R}## is the integration variable over the source charge distribution (contained with in ##\mathscr{V}##). Letting ##\nabla_{\mathbf{R}} = \left( \frac{\partial}{\partial R_x}, \frac{\partial}{\partial R_y}, \frac{\partial}{\partial R_z} \right)## denote differentiation with respect to the coordinates of ##\mathbf{R}##, notice now that\begin{align*}
\nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} &= \sum_i \dfrac{\partial}{\partial R_i} \dfrac{P_i(\mathbf{R})}{|\mathbf{r} - \mathbf{R}|} \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{\partial}{\partial R_i} \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \right] \\
&= \sum_i \left[ \dfrac{1}{|\mathbf{r} - \mathbf{R}|} \dfrac{\partial P_i}{\partial R_i} + P_i \dfrac{(\mathbf{r} - \mathbf{R})_i}{|\mathbf{r} - \mathbf{R}|^3} \right] \\
&= \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} + \dfrac{\mathbf{P} \cdot (\mathbf{r} - \mathbf{R})}{|\mathbf{r} - \mathbf{R}|^3}
\end{align*}and therefore\begin{align*}
\phi(\mathbf{r}) &= \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}}\left[ \nabla_{\mathbf{R}} \cdot \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} - \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \right] d^3 \mathbf{R} \\
&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\mathbf{P}}{|\mathbf{r} - \mathbf{R}|} \cdot \hat{\mathbf{n}} dS- \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\nabla_{\mathbf{R}} \cdot \mathbf{P}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R} \\

&= \dfrac{1}{4\pi \epsilon_0} \int_{\partial \mathscr{V}} \dfrac{\sigma_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} dS + \dfrac{1}{4\pi \epsilon_0} \int_{\mathscr{V}} \dfrac{\rho_{\mathrm{b}}}{|\mathbf{r} - \mathbf{R}|} d^3 \mathbf{R}
\end{align*}upon defining ##\sigma_{\mathrm{b}} \equiv \mathbf{P} \cdot \hat{\mathbf{n}}## and ##\rho_{\mathrm{b}} \equiv - \nabla_{\mathbf{R}} \cdot \mathbf{P}##.
Wow, now I understood
Thanks
 
  • Like
Likes dlgoff and berkeman

FAQ: Electric field due to polarized object

What is an electric field?

An electric field is a physical quantity that describes the influence that an electric charge has on other charges in its vicinity. It is a vector quantity, meaning it has both magnitude and direction.

What is a polarized object?

A polarized object is an object that has an uneven distribution of positive and negative charges, resulting in a separation of charge within the object. This creates an electric dipole moment, which can interact with an external electric field.

How does a polarized object create an electric field?

When a polarized object is placed in an external electric field, the positive and negative charges within the object experience a force in opposite directions. This results in an overall electric field being produced by the object, which can interact with other charges in its vicinity.

What factors affect the strength of the electric field due to a polarized object?

The strength of the electric field due to a polarized object depends on the magnitude of the dipole moment of the object, the distance from the object, and the direction of the external electric field. It also depends on the dielectric constant of the material the object is made of.

How is the electric field due to a polarized object calculated?

The electric field due to a polarized object can be calculated using the equation E = k * P / r^3, where E is the electric field strength, k is the Coulomb's constant, P is the dipole moment, and r is the distance from the object. This equation takes into account the factors that affect the strength of the electric field.

Similar threads

Replies
5
Views
2K
Replies
5
Views
759
Replies
1
Views
649
Replies
16
Views
800
Replies
5
Views
737
Replies
0
Views
469
Back
Top