- #36
blue_leaf77
Science Advisor
Homework Helper
- 2,637
- 786
You are welcome.emmett92k said:Ok thanks for all the help by the way.
Part c) is a bit tricky because as you said we need to apply nabla operator ##\nabla## to the potential at arbitrary point. But what we have at hand is the potential at points along the axis only. The trick is to make use of the symmetry of the system. So, first start by writing ##V(x,y,z)## as the potential at any point in space, not just on the axis. We want to calculateemmett92k said:For part (c) I know its partial differentiation but what will I differentiate with respect to? Will I do [itex]r_1[/itex] and [itex]r_2[/itex] separately?
$$\mathbf{E}(x=0,y=0,z) = -\nabla V(x,y,z) \big|_{x=0,y=0} = - \bigg( \hat{x}\frac{\partial V(x,y,z)}{\partial x}|_{x=0,y=0} + \hat{y}\frac{\partial V(x,y,z)}{\partial y}|_{x=0,y=0} + \hat{z}\frac{\partial V(x,y,z)}{\partial z}|_{x=0,y=0} \bigg)$$
Where the requirement x=0 and y=0 indicates that the observation point is on the axis which is taken to be the z axis. Now apply some symmetry argument to find the value of the first two terms without really calculating it.