- #1
XCBRA
- 18
- 0
Homework Statement
The polarization charge in the surface of a spherical cavity is [itex] -\sigma_e \cos\theta ,[/itex]at a point whose radius from the centre makes and angle [itex]\theta[/itex] with a give axis Oz. Prove that the field strength at the centre is [itex] \frac{ \sigma_e}{3 \sigma_e} [/itex] parallel to Oz.
If the cavity is in a uniform dielectric subject to a field strength [itex] E_0[/itex] parallel to the direction [itex]\theta = 0[/itex], show that
[tex] \sigma_e = 2 E_0 \epsilon_0 \frac{(\epsilon_r - 1)}{(1+\epsilon_r)} [/tex],
where [itex] \epsilon_r [/itex] is the relative permittivity of the dielectric.
Homework Equations
The Attempt at a Solution
First to find the field stength i have used Gauss' law:
[tex] \epsilon_0\int E.ds = \int \sigma da [/tex]
[tex] 4\pi R^2 \epsilon_0 E = \int \int \sigma R^2 d\theta d\phi [/tex]
Then for the second part,
I have let [itex] V_1 [/itex] for the potential inside the cavity and [itex] V_2 [/itex] for the potential outside the cavity.
I assume that:
[tex] V_1 = B_1 r\cos\theta + \frac{B_2 \cos\theta}{r^2} [/tex]
[tex] V_2 = -E_0 r\cos\theta + \frac{A_2 \cos\theta}{r^2} [/tex]
then since [itex] V_2 \neq \infty, B_2 = 0 [/itex].
Then since [itex] V_1 = V_2 at r=R [/itex]
[tex] (B_1 + E_0) R^3 = A_2 [/tex]
then find the radial electric field components:
[tex] E^r_1 = - \frac{\partial V_1}{\partial r} = -B_1 \cos\theta [/tex]
[tex] E^r_2 = - \frac{\partial V_1}{\partial r} = E_0\cos\theta+\frac{A_2 \cos\theta}{r^3} [/tex]
then taking the boundary condition
[tex] D^r_1= D^r_2
\epsilon_0 \epsilon_r E^r_2 = \epsilon_0 E^r_1 [/tex]
to give
[tex] B_1 = - \frac{3 \epsilon_r E_0}{2 \epsilon_r + 1} [/tex]
therefore inside the cavity:
[tex] P = (\epsilon_r - 1) \epsilon_0 E_1 [/tex]
[tex] P.n = P \cos\theta = \sigma_e cos\theta [/tex]
[tex] P = \sigma_e = \frac{3(\epsilon_r-1) \epsilon_0 \epsilon_r E_0}{(2\epsilon_r +1)} [/tex]
I am not sure why i have the extra [itex] \epsilon_r [/itex] in the numerator, and I am not sure if there is a simpler method to do this?
Thank you for any help.