Electric field in an electrostatic precipitator.

In summary, The electric field created by an electrostatic precipitator is inversely proportional to the distance between the wire and the cylinder wall.
  • #1
MSZShadow
9
0

Homework Statement


Electrostatic precipitators use electric forces to remove pollutant particles from smoke, in particular in the smokestacks of coal-burning power plants. One form of precipitator consists of a vertical, hollow, metal cylinder with a thin wire, insulated from the cylinder, running along its axis . A large potential difference is established between the wire and the outer cylinder, with the wire at lower potential. This sets up a strong radial electric field directed inward. The field produces a region of ionized air near the wire. Smoke enters the precipitator at the bottom, ash and dust in it pick up electrons, and the charged pollutants are accelerated toward the outer cylinder wall by the electric field. Suppose the radius of the central wire is 83*10^(-6) m, the radius of the cylinder is 14.0 cm, and a potential difference of 50.0 kV is established between the wire and the cylinder. Also assume that the wire and cylinder are both very long in comparison to the cylinder radius.

A) What is the magnitude of the electric field midway between the wire and the cylinder wall?

B) What magnitude of charge must a 34.5*10^(-6) g ash particle have if the electric field computed in part (A) is to exert a force ten times the weight of the particle?

Homework Equations


[tex]V_a - V_b = \int^{r_b}_{r_a}Edl[/tex]
[tex]F_{elec}=qE[/tex]

The Attempt at a Solution


The first thing I recognized is that since V is directly proportional to l, if the distance l is halved, so will the potential V. So the V from a to b should be
[tex]V_{ab}=\frac{50*10^3}{2}=25*10^3[/tex]

Then I took the integral
[tex]V_a-V_b=\int^{r_b}_{r_a}Edl=E(l)^{r_b}_{r_a}=E(r_b-r_a)[/tex]

Then I solved for the magnitude of E at the specified point.
[tex]|E|=\frac{V_{ab}}{r_b-r_a}=\frac{25*10^3\ V}{(\frac{14*10^{-2}\ m-83*10^{-6}\ m}{2})-0\ m}=357354.7174\ \frac{V}{m}[/tex]

Of course, this is wrong. Where did I make a mistake, and how should I have done the problem?
 
Last edited:
Physics news on Phys.org
  • #2
It looks like you have assumed E is constant along the radius of the cylinder. I see others agree
http://answers.yahoo.com/question/index?qid=20100219162818AA3lXpY

but I don't understand that. The electric field lines spread out radially and are further apart at the outside than at the inside. It seems to me that means the electric field decreases with radius and therefore your integration is incorrect. Gauss' Law indicates the E field is proportional to 1/r.
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elecyl.html#c2
You could integrate with E = C/r to get the C related to the potential difference and then you would know E as a function of r.
 
  • #3
Ah. You're right. E wouldn't be constant...
That would mean that the graph of V against l wouldn't be linear as well...

Alright. I'll see where I can get with that. Starting with solving for the linear density...
...
Alright. Got it. The answer to part A is 96070.57423 V/m. Thanks. :)
 
Last edited:

FAQ: Electric field in an electrostatic precipitator.

1. What is an electrostatic precipitator?

An electrostatic precipitator is a device used to remove particulate matter from a gas stream by applying an electric field to the gas. This causes the particles to become charged and then attracted to collector plates, where they are removed from the gas stream.

2. How does an electric field work in an electrostatic precipitator?

The electric field in an electrostatic precipitator is created by applying a high voltage between two electrodes. This creates a potential difference between the electrodes, which causes ions to form and an electric field to be established. The electric field then causes charged particles in the gas stream to move towards the collector plates, where they are collected.

3. What is the purpose of the electric field in an electrostatic precipitator?

The purpose of the electric field in an electrostatic precipitator is to remove particulate matter from a gas stream. The electric field causes the particles to become charged and then attracted to collector plates, where they are removed from the gas stream.

4. How is the strength of the electric field determined in an electrostatic precipitator?

The strength of the electric field in an electrostatic precipitator is determined by the voltage applied between the electrodes. A higher voltage will result in a stronger electric field and a more efficient removal of particles from the gas stream.

5. What are the benefits of using an electrostatic precipitator?

Using an electrostatic precipitator has several benefits, including the removal of particulate matter from gas streams, improved air quality, and reduced emissions. It is also a cost-effective and energy-efficient method of pollution control.

Back
Top