- #1
darioslc
- 9
- 2
- Homework Statement
- Get the electric field and the potential due to wire of length 3L in the point (0,0)
- Relevant Equations
- E definition and potencial:
$$\vec{E}(x,y)=\frac1{4\pi\varepsilon_0}\int\frac{dq}{(r-r')^{2}}\hat{r}$$
$$E=-\nabla V$$
Hello! I do it for definition because Gauss's law not possible.
I use cartesian coordinates:
$$dq=\lambda dx'\text{because is only in x direction}$$
$$\vec{r'}=(x',0)$$
$$\vec{r}-\vec{r'}=(x-x',y)$$
$$\hat{r}=\frac{(x-x',y)}{\sqrt{(x-x')^{2}+y^{2}}}$$
$$\vec{E}(x,y)=\frac1{4\pi\varepsilon_0}\int\frac{\lambda}{\sqrt{(x-x')^{2}+y^2}^2}\frac{(x-x',y)}{\sqrt{(x-x')^{2}+y^{2}}}dx'$$
like in ##y=0##, only survive one integral, in (0,0):
$$\vec{E}(x,y)=\frac1{4\pi\varepsilon_0}\int\frac{\lambda}{\sqrt{(x')^{2}}^2}\frac{-x'}{\sqrt{x'^{2}}}dx'$$
$$\vec{E}(x,y)=-\frac1{4\pi\varepsilon_0}\lambda\int\frac{x'}{|x'|^3}dx'$$
now like x'>0 ##\vec{E}(0,0)=-\frac{1}{4\pi\varepsilon_0}\lambda\int\frac{1}{x'^{2}}dx'\hat{x}##
then ##\vec{E}(0,0)=\frac{1}{4\pi\varepsilon_0}\lambda\frac{3}{4L}##
Then is similar for the other wire, but I get with opposite sign, therefore E(0,0)=0
My doubt is the potencial, I need the general expression for E then integrate both components and evaluate in (0,0) or only will constant in (0,0)?
Thanks a lot
I use cartesian coordinates:
$$dq=\lambda dx'\text{because is only in x direction}$$
$$\vec{r'}=(x',0)$$
$$\vec{r}-\vec{r'}=(x-x',y)$$
$$\hat{r}=\frac{(x-x',y)}{\sqrt{(x-x')^{2}+y^{2}}}$$
$$\vec{E}(x,y)=\frac1{4\pi\varepsilon_0}\int\frac{\lambda}{\sqrt{(x-x')^{2}+y^2}^2}\frac{(x-x',y)}{\sqrt{(x-x')^{2}+y^{2}}}dx'$$
like in ##y=0##, only survive one integral, in (0,0):
$$\vec{E}(x,y)=\frac1{4\pi\varepsilon_0}\int\frac{\lambda}{\sqrt{(x')^{2}}^2}\frac{-x'}{\sqrt{x'^{2}}}dx'$$
$$\vec{E}(x,y)=-\frac1{4\pi\varepsilon_0}\lambda\int\frac{x'}{|x'|^3}dx'$$
now like x'>0 ##\vec{E}(0,0)=-\frac{1}{4\pi\varepsilon_0}\lambda\int\frac{1}{x'^{2}}dx'\hat{x}##
then ##\vec{E}(0,0)=\frac{1}{4\pi\varepsilon_0}\lambda\frac{3}{4L}##
Then is similar for the other wire, but I get with opposite sign, therefore E(0,0)=0
My doubt is the potencial, I need the general expression for E then integrate both components and evaluate in (0,0) or only will constant in (0,0)?
Thanks a lot
Attachments
Last edited: