- #1
zapman345
- 11
- 2
Homework Statement
Calculate the magnitude and direction of the electric field due to the ring in the point P on the z-axis.
Homework Equations
Charge distribution on the ring is given by [itex]λ(φ)=λ_0\cdot sin(φ)[/itex]. This should result in the total charge on the ring being zero.
Electric field is given by [itex]E=\frac{1}{4\pi\epsilon_{0}}\int_{Path}\frac{\lambda\left(r\right)}{r^{2}}\hat{r}dl[/itex]
The distance [itex]r[/itex] from any point on the ring to the point P: [itex]r=\sqrt{z_0^2+R^2}[/itex]
The Attempt at a Solution
Due to symmetry and the non-uniformity of the charge distribution we can say that the electric field in the z-direction is 0 ([itex]E_z=0[/itex]) but there will be an x-component as seen in the drawing I made.
So now to select the x-component we say [itex]dE=\frac{dE_{x}}{\sin\left(\theta\right)}[/itex] so [itex]dE_x=dE\cdot\sin\left(\theta\right)[/itex].
[tex]
\begin{eqnarray*}
dE_{x} & = & dE\cdot\sin\left(\theta\right)\\
& = & \frac{1}{4\pi\epsilon_{0}}\cdot\frac{1}{r^{2}}\sin\left(\theta\right)dq\\
& = & \frac{1}{4\pi\epsilon_{0}}\cdot\frac{1}{r^{2}}\sin\left(\theta\right)\lambda dl\\
& = & \frac{1}{4\pi\epsilon_{0}}\cdot\frac{1}{r^{2}}\sin\left(\theta\right)\lambda_{0}\sin\left(\varphi\right)dl\\
& = & \frac{1}{4\pi\epsilon_{0}}\cdot\frac{1}{r^{2}}\sin\left(\theta\right)\lambda_{0}\sin\left(\varphi\right)Rd\varphi\\
& = & \frac{1}{4\pi\epsilon_{0}}\cdot\frac{1}{r^{2}}\frac{R}{r}\lambda_{0}\sin\left(\varphi\right)Rd\varphi\\
& = & \frac{\lambda_{0}R^{2}}{4\pi\epsilon_{0}}\cdot\frac{1}{r^{3}}\sin\left(\varphi\right)d\varphi\\
& = & \frac{\lambda_{0}}{4\pi\epsilon_{0}}\cdot\frac{R^2}{\left(z_{0}^{2}+R^{2}\right)^{\frac{3}{2}}}\sin\left(\varphi\right)d\varphi
\end{eqnarray*}
[/tex]
Then you should integrate to get the final answer [tex]
\begin{eqnarray*}
E_{x} & = & \frac{\lambda_{0}}{4\pi\epsilon_{0}}\cdot\frac{R^{2}}{\left(z_{0}^{2}+R^{2}\right)^{\frac{3}{2}}}\int_{0}^{2\pi}\sin\left(\varphi\right)d\varphi\\
& = & 0
\end{eqnarray*}
[/tex]
But as you can see that results in 0 so I'm not really sure where the mistake is but I think it's either in selecting the x-component or I'm doing the integration wrong.