- #1
PhDeezNutz
- 808
- 555
- Homework Statement
- A toroidal coil has a rectangular cross section, with inner radius ##a##, outer radius ##a+w##, and height ##h##. It carries a total of ##N## tightly wound turns, and the current is increasing at a constant rate (##\frac{dI}{dt} = kt##). If ##w## and ##h## are both much less than ##a##, find the electric field at point ##z## above the center of the toroidal. [Hint: Exploit the analogy between Faraday fields and magnetostatic fields, and refer to Example 5.6 (In Griffiths)]
- Relevant Equations
- ##B_{text{toroidal coil}} = \frac{\mu_0 NI}{2 \pi s} \hat{\phi}## where ##s## is the distance from the center of the toroidal coil (the origin if you will) (also ##\hat{\phi}## because I assumed the toroidal coil lies in the ##xy-\text{plane}##.
Since ##\nabla \times \vec{E} = - \frac{\partial \vec{B}}{\partial t}## which I believe implies that
##\vec{E} \left( \vec{r} \right) = \frac{1}{4 \pi} \int {\nabla’ \times \frac{\partial \vec{B}}{\partial t}}{\left| \vec{r} - \vec{r}’ \right|}\, d \tau’##
The relevant equation listed above as
##\vec{E} \left( \vec{r} \right) = \frac{1}{4 \pi} \int {\nabla’ \times \frac{\partial \vec{B}}{\partial t}}\frac{1}{\left| \vec{r} - \vec{r}’ \right|}\, d \tau’##
Seems to me to be a natural consequence of the Helmholtz Theorem so I don’t see why it wouldn’t be valid but strangely I’m finding a curl of ##0##. Here’s the calculation.
If ##\frac{\partial I}{\partial t} = k \Rightarrow I = kt##. Plugging ##I## into ##\vec{B}## we get
##\vec{B} = \frac{\mu_0 N kt}{2 \pi s’} \hat{\phi}’##
And taking the partial derivative wrt ##t##
##\frac{ \partial \vec{B}}{\partial t} = \frac{\mu_0 N k}{2 \pi s’} \hat{\phi}’##
In cylindrical coordinates the primed curl of the above is
##\nabla’ \times \frac{ \partial \vec{B}}{\partial t} = \nabla’ \times \frac{\mu_0 N k}{2 \pi s’} \hat{\phi’} = \frac{1}{s’} \left(\frac{\partial}{\partial s’} \left(s’ \frac{ \partial \vec{B}}{\partial t} \right) \right) \hat{\phi}’##
## = \frac{1}{s’} \left(\frac{\partial}{\partial s’} \left(s’ \frac{\mu_0 N k}{2 \pi s’} \right) \right) \hat{\phi}’ = 0 \hat{\phi’}##
Which makes the following integral zero
##\vec{E} \left( \vec{r} \right) = \frac{1}{4 \pi} \int {\nabla’ \times \frac{\partial \vec{B}}{\partial t}}\frac{1}{\left| \vec{r} - \vec{r}’ \right|}\, d \tau’ = 0##
Where did I go wrong with the curl calculation because the answer is definitely not zero?
Thanks for any help in advanced.
Edit all instances of the integral should be
##\vec{E} \left( \vec{r} \right) = \frac{1}{4 \pi} \int \frac{\nabla’ \times \frac{\partial \vec{B}}{\partial t}}{\left| \vec{r} - \vec{r}’\right|} \, d \tau’##
##\vec{E} \left( \vec{r} \right) = \frac{1}{4 \pi} \int {\nabla’ \times \frac{\partial \vec{B}}{\partial t}}\frac{1}{\left| \vec{r} - \vec{r}’ \right|}\, d \tau’##
Seems to me to be a natural consequence of the Helmholtz Theorem so I don’t see why it wouldn’t be valid but strangely I’m finding a curl of ##0##. Here’s the calculation.
If ##\frac{\partial I}{\partial t} = k \Rightarrow I = kt##. Plugging ##I## into ##\vec{B}## we get
##\vec{B} = \frac{\mu_0 N kt}{2 \pi s’} \hat{\phi}’##
And taking the partial derivative wrt ##t##
##\frac{ \partial \vec{B}}{\partial t} = \frac{\mu_0 N k}{2 \pi s’} \hat{\phi}’##
In cylindrical coordinates the primed curl of the above is
##\nabla’ \times \frac{ \partial \vec{B}}{\partial t} = \nabla’ \times \frac{\mu_0 N k}{2 \pi s’} \hat{\phi’} = \frac{1}{s’} \left(\frac{\partial}{\partial s’} \left(s’ \frac{ \partial \vec{B}}{\partial t} \right) \right) \hat{\phi}’##
## = \frac{1}{s’} \left(\frac{\partial}{\partial s’} \left(s’ \frac{\mu_0 N k}{2 \pi s’} \right) \right) \hat{\phi}’ = 0 \hat{\phi’}##
Which makes the following integral zero
##\vec{E} \left( \vec{r} \right) = \frac{1}{4 \pi} \int {\nabla’ \times \frac{\partial \vec{B}}{\partial t}}\frac{1}{\left| \vec{r} - \vec{r}’ \right|}\, d \tau’ = 0##
Where did I go wrong with the curl calculation because the answer is definitely not zero?
Thanks for any help in advanced.
Edit all instances of the integral should be
##\vec{E} \left( \vec{r} \right) = \frac{1}{4 \pi} \int \frac{\nabla’ \times \frac{\partial \vec{B}}{\partial t}}{\left| \vec{r} - \vec{r}’\right|} \, d \tau’##
Last edited: