Electric field on the axis of a ring-shaped charged conductor

AI Thread Summary
The discussion centers on the calculation of the electric field on the axis of a ring-shaped charged conductor. A participant questions why the horizontal component of the electric field is not multiplied by two, given that the y-components cancel out. Another contributor clarifies that the integration bounds from 0 to 2π account for the entire ring, eliminating the need for additional multiplication. If the integration were limited to 0 to π, then a multiplication by two would be necessary. The conversation emphasizes the importance of understanding integration limits in electric field calculations.
yashboi123
Messages
17
Reaction score
0
Homework Statement
A ring-shaped conductor with radius a = 2.20 cm has a total positive charge Q = 0.130 nC uniformly distributed around it
Relevant Equations
E = F/q
1706663702409.png

Hello. I was wondering why do we not multiply cos(alpha) by 2. I believe we should do this since the y-components of the electric field cancel out, meaning there would be 2 x-components of the electric field(at least I think so). Currently, this derivation/answer only considers one horizontal component, not the other half.
 
Physics news on Phys.org
How does it only consider one horizontal component when the integration is from ##0## to ##2 \pi##?

The integration bounds take care of this “doubling up effect”.

If you did it from ##0## to ##\pi## you would certainly have to multiply by 2 at the end.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top