Electric field strength at a point due to 3 charges

AI Thread Summary
The discussion revolves around calculating the electric field strength at a point due to three charges, resulting in a proposed value of 13q for the new charge needed to balance the electric field to zero. The user applied the electric field equation and equated the contributions from the existing charges, seeking verification of their calculations. Other participants suggest providing more detailed steps in the solution to clarify the reasoning, particularly regarding the absence of 'x' in the equation and the sign choices for the terms. Overall, the consensus leans towards the correctness of the user's answer, pending further elaboration on the methodology. The conversation emphasizes the importance of clear problem-solving steps in physics calculations.
Tesla In Person
Messages
34
Reaction score
13
Homework Statement
Find the value of the charge placed at the point that makes the electric field 0.
Relevant Equations
Electric field: Kq /r^2
I got E. 13q as the answer. That is what i did: The electric field due to +q at origin 0 should equal the electric fields of charges -3q and the new charge placed at 2x. So applying the equation above like this; k*(q) / (2^2) = -3q*k + (k*C)/ 4 solving for C the new charge added, gives 13q. I don't know if it's correct because i don't have the answer to this question . Can you please check my working thanks.
 

Attachments

  • 3.PNG
    3.PNG
    30.2 KB · Views: 159
Physics news on Phys.org
Tesla In Person said:
Homework Statement:: Find the value of the charge placed at the point that makes the electric field 0.
Relevant Equations:: Electric field: Kq /r^2

I got E. 13q as the answer. That is what i did: The electric field due to +q at origin 0 should equal the electric fields of charges -3q and the new charge placed at 2x. So applying the equation above like this; k*(q) / (2^2) = -3q*k + (k*C)/ 4 solving for C the new charge added, gives 13q. I don't know if it's correct because i don't have the answer to this question . Can you please check my working thanks.
I think your answer is correct.
 
  • Like
Likes Tesla In Person
In order to make it easier for someone to follow your solution, you could show more steps. In particular, show why x does not appear in your equation and explain the choice of signs for the terms in your equation.
 
TSny said:
I think your answer is correct.
It must be if it really is "Tesla".
 
  • Haha
  • Love
Likes Tesla In Person and TSny
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top