- #1
aiaigasa
- 1
- 0
Hi, I'm having a bit of trouble with the following problem. Any insight as to what I'm doing wrong?
A solid metal sphere with radius 0.900 m carries a net charge of 0.130 nC. Find the magnitude of the electric field at at a point inside the sphere, 0.100 m below the surface.
[tex]\Phi = \int\vec{E}\cdot\vec{A} = \frac{Q}{\epsilon_{0}}[/tex]
[tex]Q = \frac{0.130 \times 10^{-9}}{\frac{4}{3}\pi(0.9)^{3}} \times \frac{4}{3}\pi(0.8)^{3} = 9.13032 \times 10^{-11}[/tex]
[tex]\Phi = \frac{9.13032 \times 10^{-11}}{\epsilon_{0}} = 10.3119[/tex]
[tex]E = \frac{\Phi}{A} = \frac{10.3119}{4\pi(0.8)^{2}} = 1.28217 \frac{N}{C}[/tex]
Homework Statement
A solid metal sphere with radius 0.900 m carries a net charge of 0.130 nC. Find the magnitude of the electric field at at a point inside the sphere, 0.100 m below the surface.
Homework Equations
[tex]\Phi = \int\vec{E}\cdot\vec{A} = \frac{Q}{\epsilon_{0}}[/tex]
The Attempt at a Solution
[tex]Q = \frac{0.130 \times 10^{-9}}{\frac{4}{3}\pi(0.9)^{3}} \times \frac{4}{3}\pi(0.8)^{3} = 9.13032 \times 10^{-11}[/tex]
[tex]\Phi = \frac{9.13032 \times 10^{-11}}{\epsilon_{0}} = 10.3119[/tex]
[tex]E = \frac{\Phi}{A} = \frac{10.3119}{4\pi(0.8)^{2}} = 1.28217 \frac{N}{C}[/tex]
Last edited: