- #1
p6.626x1034js
- 16
- 0
Homework Statement
A total charge q is uniformly distributed throughout a sphere of radius a.
Find the electric potential in the region where r1<a and r2>a.
The potential is defined anywhere inside the sphere.
Homework Equations
letting ρ = volume charge density and ε = permittivity constant,
[tex]
\nabla^2\phi = \frac{\rho}{\epsilon}
[/tex]
The Attempt at a Solution
for r1 <a,
[tex]
\rho = \frac{q}{\frac{4}{3}\pi a^3} = \frac{3q}{4 \pi a^3}
[/tex]
there is only an r term, so
[tex]
\frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{d \phi}{dr} \right) =\frac{3q}{4 \pi a^3}\\
\frac{d \phi}{dr} = \frac{q r}{4 \pi a^3} + \frac{C_1}{r^2}\\
\phi = \frac{q r^2}{8 \pi a^3} - \frac{C_1}{r} + C_2\\
[/tex]
C1 = 0, so that the potential is defined at the origin (r = 0)
so,
[tex]
\phi(r_1) = \frac{q r_1^2}{8 \pi a^3} + C_2
[/tex]
-------------------
for r2 <a,
[tex]
\phi(r_2) = -\frac{C_3}{r_2} + C_4\\
[/tex]
----------------------
how do I find C2, C3, and C4?
please help :/