- #1
johne1618
- 371
- 0
Can one describe electrodynamics without any reference to fields?
I think you can.
Using the Heaviside-Feynman expression for the electromagnetic field due to an arbitrarily moving charge, together with the Lorentz force law, one can write down an expression for the electromagnetic force [itex]\mathbf{F}[/itex] on a charge [itex]q_1[/itex], that is instantaneously at rest in an inertial frame, due to an arbitrarily moving charge [itex]q_2[/itex] as:
[tex]
\mathbf{F} = \frac{q_1 q_2}{4 \pi \varepsilon_0} \left\{ \left[ \frac{\mathbf{\hat{r}}}{r^2} \right]_{ret} + \frac{\left[ r \right]_{ret}}{c} \frac{\partial}{\partial t}\left[\frac{\mathbf{\hat r}}{r^2}\right]_{ret} + \frac{1}{c^2} \frac{\partial^2 \left[ \mathbf{\hat r} \right]_{ret}}{\partial t^2} \right\} \\
[/tex]
where [itex][\mathbf{r}]_{ret}[/itex] is the vector from the retarded position of [itex]q_2[/itex], at time [itex]t - [r]_{ret}/c[/itex], to [itex]q_1[/itex], at time [itex]t[/itex].
Does the above formula contain all of classical electromagnetism?
I think you can.
Using the Heaviside-Feynman expression for the electromagnetic field due to an arbitrarily moving charge, together with the Lorentz force law, one can write down an expression for the electromagnetic force [itex]\mathbf{F}[/itex] on a charge [itex]q_1[/itex], that is instantaneously at rest in an inertial frame, due to an arbitrarily moving charge [itex]q_2[/itex] as:
[tex]
\mathbf{F} = \frac{q_1 q_2}{4 \pi \varepsilon_0} \left\{ \left[ \frac{\mathbf{\hat{r}}}{r^2} \right]_{ret} + \frac{\left[ r \right]_{ret}}{c} \frac{\partial}{\partial t}\left[\frac{\mathbf{\hat r}}{r^2}\right]_{ret} + \frac{1}{c^2} \frac{\partial^2 \left[ \mathbf{\hat r} \right]_{ret}}{\partial t^2} \right\} \\
[/tex]
where [itex][\mathbf{r}]_{ret}[/itex] is the vector from the retarded position of [itex]q_2[/itex], at time [itex]t - [r]_{ret}/c[/itex], to [itex]q_1[/itex], at time [itex]t[/itex].
Does the above formula contain all of classical electromagnetism?