- #1
spaghetti3451
- 1,344
- 34
The electromagnetic action can be written in the language of differential forms as
##\displaystyle{S=-\frac{1}{4}\int F\wedge \star F.}##
The electromagnetic action can also be written in the language of vector calculus as
$$S = \int \frac{1}{2}(E^{2}+B^{2})$$
How can you show the equivalence between the two formulations of the electromagnetic action?Here is my attempt:
##\displaystyle{S=-\frac{1}{4}\int F\wedge \star F}##
##\displaystyle{=-\frac{1}{4}\int \left(\sum_i E_i\,{\rm d}t\wedge{\rm d}x^i - \star\sum_i B_i\,{\rm d}t\wedge{\rm d}x^i\right)\wedge \star \left(\sum_j E_j\,{\rm d}t\wedge{\rm d}x^j - \star\sum_j B_j\,{\rm d}t\wedge{\rm d}x^j\right)}##
##\displaystyle{=-\frac{1}{4}\int \left(\sum_i E_i\,{\rm d}t\wedge{\rm d}x^i - \star\sum_i B_i\,{\rm d}t\wedge{\rm d}x^i\right)\wedge \left(\star \sum_j E_j\,{\rm d}t\wedge{\rm d}x^j - \sum_j B_j\,{\rm d}t\wedge{\rm d}x^j\right),}##
since ##\displaystyle{**=(-1)^{p(n+p)+1}}## in Lorentzian space, where ##\star## is applied on a ##p##-form and ##n## is the number of spacetime dimensions, so that, in four dimensions for the ##2##-form ##\displaystyle{dt\wedge dx^{j}}##, ##\displaystyle{**=(-1)^{p(n+p)+1}=-1}##.
What do you do next?
##\displaystyle{S=-\frac{1}{4}\int F\wedge \star F.}##
The electromagnetic action can also be written in the language of vector calculus as
$$S = \int \frac{1}{2}(E^{2}+B^{2})$$
How can you show the equivalence between the two formulations of the electromagnetic action?Here is my attempt:
##\displaystyle{S=-\frac{1}{4}\int F\wedge \star F}##
##\displaystyle{=-\frac{1}{4}\int \left(\sum_i E_i\,{\rm d}t\wedge{\rm d}x^i - \star\sum_i B_i\,{\rm d}t\wedge{\rm d}x^i\right)\wedge \star \left(\sum_j E_j\,{\rm d}t\wedge{\rm d}x^j - \star\sum_j B_j\,{\rm d}t\wedge{\rm d}x^j\right)}##
##\displaystyle{=-\frac{1}{4}\int \left(\sum_i E_i\,{\rm d}t\wedge{\rm d}x^i - \star\sum_i B_i\,{\rm d}t\wedge{\rm d}x^i\right)\wedge \left(\star \sum_j E_j\,{\rm d}t\wedge{\rm d}x^j - \sum_j B_j\,{\rm d}t\wedge{\rm d}x^j\right),}##
since ##\displaystyle{**=(-1)^{p(n+p)+1}}## in Lorentzian space, where ##\star## is applied on a ##p##-form and ##n## is the number of spacetime dimensions, so that, in four dimensions for the ##2##-form ##\displaystyle{dt\wedge dx^{j}}##, ##\displaystyle{**=(-1)^{p(n+p)+1}=-1}##.
What do you do next?