Electromagnetic effects and Magnetic Fields Questions

AI Thread Summary
When two parallel wires carry current in the same direction, they attract each other due to electromagnetic forces. The induced electromotive force (emf) in a conductor moving through a magnetic field is maximized when the movement is perpendicular to the field lines. In SI units, emf is measured in volts, which is equivalent to joules per coulomb, and incorrect units would not match this definition. The magnetic force on a charged particle occurs when it moves perpendicular to the magnetic field, and this principle can also apply to macroscopic objects. Understanding these concepts is crucial for grasping the effects of electromagnetic fields and forces.
lpettigrew
Messages
115
Reaction score
10
Homework Statement
I have been learning about electromagnetic effects recently and while revising have found several, relatively straight forward problems. However, my understanding of this topic is rather inexperienced and therefore I wondered whether anyone could dispense any further comments about how to improve my responses.

1. What force will two long parallel wires carrying a current in the same direction exert?
2. A 20 mm long conductor is positioned within a magnetic field of flux density of 0.10 T. The conductor is moving in a direction at 30 degrees to the field at at speed of 5ms^-2. Find the value of the induced EMF.
3. In what direction would an aircraft flying horizontally have to fly to induce an emf across its wings?
4. What would be an incorrect unit for emf?
5. A conductor of length 20 mm is carrying a current of 5 A and is situated in a magnetic field of flux density 0.10 T. If the current is flowing in a direction at 30 degrees to the field lines find the magnitude of the force on the wire?
6. What experiences a force in a magnetic field?
7. What is the value of flux when the magnetic flux through a coil of 5 turns is uniformly increased from zero to a final value in 10 s, inducing an EMF of 0.03 V across the coil?
Relevant Equations
F = BILsinθ
ε= ΔNΦ/Δt
1. When two parallel wires carry current in the same direction, they exert equal and opposite attractive forces on each other.

2. ε=lvBsinθ
ε=0.02*5*0.1*sin30
ε=0.005 V

3. Well, a conductor moving through a magnetic field has the potential to induce an emf, but this movement must be in such a direction that the conductor cuts through the lines of magnetic flux, and will be a maximum when it moves perpendicular to the field. Would this imply that this occurs when the plane travels from East to West?

4. In S.I. units, emf is measured in volts, equal to one joule per coulomb. Therefore would the incorrect unit be AΩ^-1 or perhaps Wbs^-1?

5. F = BILsinθ
F=0.1*5*0.02*sin30
F=0.005 N

6. A magnetic force will be exerted when a charged particle moves perpendicular to the field, therefore, a charged particle whose velocity has a component perpendicular to the field lines will experience a force when positioned in a magnetic field.

7. Rearranging the formula for induced emf;
ε= ΔNΦ/Δt
Φ=εt/N
Therefore Φ=0.03*10/5=0.06 Wb

I would be very grateful for any assistance and truly just want to better understand this subject area 🤞
 
Physics news on Phys.org
I would just like to work with one item at a time. For (3), the Earth's magnetic field in many places has a vertical component to it. I think it will be the vertical component that makes for the EMF across the wings, and I don't think the direction matters, so long as there is a vertical component to the Earth's magnetic field.

In flying east and west, the EMF will be from bottom to top and visa versa.
 
Last edited:
lpettigrew said:
4. In S.I. units, emf is measured in volts, equal to one joule per coulomb. Therefore would the incorrect unit be AΩ^-1 or perhaps Wbs^-1?
Anything that's not equivalent to a volt would be an incorrect unit. But Wb/s is equivalent to a volt, isn't it?

6. A magnetic force will be exerted when a charged particle moves perpendicular to the field, therefore, a charged particle whose velocity has a component perpendicular to the field lines will experience a force when positioned in a magnetic field.
This question does seem a little vague. Your answer is correct as far as charges go. But I can think of macroscopic objects, like paper clips, that experience a force in a magnetic field, so you could expand on your answer.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top