- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
$\newcommand{\uvec}[1]{\boldsymbol{\hat{\textbf{#1}}}}$
There is a uniform magnetic field $\mathbf{B}$ directed along the axis, and confined to a cylindrical volume of radius $R$. The magnitude of $\mathbf{B}$ is decreasing at a constant rate of $10$ mT/s. In unit-vector notation, what is the initial acceleration of an electron released at (a) point $a$ (radial distance $r=5\times 10^{-2} \, \text{m}$, (b) point $b$ (at the center), and (c) point $c$ (distance $r$ down)?
So, if you look at a cross-section of the cylinder, you see that the $\mathbf{B}$ field is directed away from you. Define $x$ to be positive to the right, $y$ positive up, and $z$ positive out. Then point $a$ is at $r\uvec{j}$ and point $b$ is at the origin, and point $c$ is at $-r\uvec{j}$.
Now then: I tried two avenues. One was that $\mathbf{F}=m\mathbf{a}=q \mathbf{v}\times\mathbf{B},$ so $\dot{\mathbf{F}}=q (\mathbf{a}\times\mathbf{B}+\mathbf{v}\times\dot{\mathbf{B}})=m\dot{\mathbf{a}}.$ But while I'm told what $\dot{\mathbf{B}}$ is, I don't know what $\mathbf{B}$ is.
The next thing I tried was Faraday's Law: $V=-\dfrac{\Phi_B}{dt}$. The problem here is that I'm not very clear on what the current loop would be. It's not stated in the problem that the cylindrical volume even has a conducting surface, so I'm not sure I can say that the cylinder itself is conducting. Moreover, it's not clear to me what surface I should use to define $\Phi_B$. Presumably it would have a constant area $A$, so that I could say $\Phi_B=BA$, and $\dot{\Phi}_B=\dot{B}A$. But how would I relate this surface/boundary combination with points $a, b,$ and $c$?
There is a uniform magnetic field $\mathbf{B}$ directed along the axis, and confined to a cylindrical volume of radius $R$. The magnitude of $\mathbf{B}$ is decreasing at a constant rate of $10$ mT/s. In unit-vector notation, what is the initial acceleration of an electron released at (a) point $a$ (radial distance $r=5\times 10^{-2} \, \text{m}$, (b) point $b$ (at the center), and (c) point $c$ (distance $r$ down)?
So, if you look at a cross-section of the cylinder, you see that the $\mathbf{B}$ field is directed away from you. Define $x$ to be positive to the right, $y$ positive up, and $z$ positive out. Then point $a$ is at $r\uvec{j}$ and point $b$ is at the origin, and point $c$ is at $-r\uvec{j}$.
Now then: I tried two avenues. One was that $\mathbf{F}=m\mathbf{a}=q \mathbf{v}\times\mathbf{B},$ so $\dot{\mathbf{F}}=q (\mathbf{a}\times\mathbf{B}+\mathbf{v}\times\dot{\mathbf{B}})=m\dot{\mathbf{a}}.$ But while I'm told what $\dot{\mathbf{B}}$ is, I don't know what $\mathbf{B}$ is.
The next thing I tried was Faraday's Law: $V=-\dfrac{\Phi_B}{dt}$. The problem here is that I'm not very clear on what the current loop would be. It's not stated in the problem that the cylindrical volume even has a conducting surface, so I'm not sure I can say that the cylinder itself is conducting. Moreover, it's not clear to me what surface I should use to define $\Phi_B$. Presumably it would have a constant area $A$, so that I could say $\Phi_B=BA$, and $\dot{\Phi}_B=\dot{B}A$. But how would I relate this surface/boundary combination with points $a, b,$ and $c$?